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The Sale of EUREKA

Weregret that it has been necessaryto increase the price of Eureka to 30p owiny |)
the continual rise in printing costs. Present subscription accounts will, however, «1

tinue to be debited at 20p per issue, and payments of £1.50 or over madeinto sul

scription accounts during the present year will be debited at 30p per issue irrenjie

tive of any future price rises. Single copies by post will be charged at 40p each
Back numbers are 25p each if in stock; if not, Xeroxed copies are available at 1, )))

each but may be subject to some delay. Cheques, etc., should be sentto:

 

The Business Manager,

'"Eureka',

The Arts School,

Bene't Street,
Cambridge.

CB2 3PY

and made payable to 'Eureka'. Dollar rates are $1.00 per copy on subscription
account ($5.00 or more), $1.25 for single copies. All rates are inclusive of
postage.

ERRATA TO EUREKA 35

We are grateful to Mr. P.H. A. Green, who points out that the answerto the problei

on page 25 is not 65, as given, but 25. (Consider triangles (15, 20, 25)(25, 24, 7)).

We are grateful to Mr. T.C.Smyth and Mr K, Nilsen, who show that the 'Alphametr te’
has four solutions (A, P = 0,6 or 6,0; L, Y, E = 3, 5,7 or 5, 7, 3).

FOOTNOTE TO "WELL-FOUNDED GAMES"

Let a position in Nim haye k piles with n,,...,n, members. For each j, expres jij
in binary form as 2j4d;;2/, where each djj is either 1 or 0. Now the position is a I’
position for positive Nim iff Zjdjj is even for eachi= 0.

A position is a P-position for negative Nim iff either there is a pile with morethai

one counter and it is a P-position for positive Nim or every pile has 0 or 1 countes

and it is an N-position for positive Nim.

 

The 'Marienbad' game started with piles of 1, 3,5 and 7 counters, which is a P-
position for either game.
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Recent results of Pfister about Sums
of Squares

by Prof. J.W.S. Cassels

One would hardly have expected something essentially new to turn up in a topic so
old and well-cultivated as that of representation by sums of squares. Recently,

however, there have been several exciting new developments, mainly due to A. Pfiste:
Many of them generalize to general quadratic forms and there are important con

sequences for quadratic form theory but here weshall consider only sums of

squares. Also I shall be able to explain only one facet of Pfister's work.

Let k be any field of characteristic other than 2. For integral n > 0 denote by G,,
Gy(k) the set of non-zero elements of k which are sumsof n squares of elements of

k. If a © Gy, say

a. = be TF cde + b2 = 0,

then clearly a~! € G,, since

a~1 = (b,/a)2 +... + (bp/a)?.

It is well-known that G, is a group under multiplication. This follows from the
identity

(x? + x8)(y? + y3) = 27 + 23

where

Z1 = % 1X2 — YiVe2 Zo =%X1V2q + XoV1

familiar from the multiplication of complex numbers. There are similar identities

(x9 Ft cee RANG? F coe FG) HSE Face + OR (1)

for n = 4 and n = 8 wherethez; are bilinear forms with integral coefficients in the
Xj and yj. These show that G, and Gg are groups. The identities with n = 4 and 8

are associated with the multiplication of Hamilton's quaternions and Cayley's octo
nions respectively. When k is the real field it was shown by Hurwitz at the end ofthe
last century that 1,2,4 and 8 are the only values of n for which there are identities

(1) in which the z; are bilinear forms. Frank Adams showed indeed that when n is
not 1,2,4 8 there are no identities (1) even if the zj are allowed to be any continuous
functions of the Xj and the yj. It was thus totally unexpected when Pfister proved hin

Theorem 1. (Pfister.) Let n = 2™ be any power of 2. Then G,(k) is a group for all
fields k.

Theorem 2. (Pfister.) Let n not be a power of 2. Then there is somefield k
(depending possibly on n) such that G,(k) is not a group.

Before we prove theorem 1 we must recall somefirst-year algebra and introduce
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some notation. We say that twonon-singular quadratic forms f,g inn variables with

-oefficients in k are equivalent if there is a non-singular transformation

y = Tx,

a ly

n

¥Yi= », tizXj (1<i<n)

j=1

with

tij © k det(t;;) = 0,

auch that

g(x) = {(Tx)

identically in the variables X,,...,Xn- Clearly equivalence is an equivalence rela-

‘ion in the technical sense. For any form f we denote by M(f) the set of non-zero

elements ¢ of k such that cf is equivalent to f.

(emma 1. The elements of M(f) form a group under multiplication. It includes all

iie non-zero squares. If f is equivalent to g then M(f) = M(g).

 

roof. If

(Tx) =c7f(x) i = 1,2)

then

f(T Tox) = €f(T2x) = ¢ C2f(x)

and

f{(Ty1x) = cz1£(x).

if déek, d = 0 we have

f (dx) = d2£(x).

linally if f is equivalent to g then cf is equivalent to cg for any c € k. Hencef is

equivalent to cf if and only if g is equivalent to cg. This is the last statement of

ihe enunciation.

We shall denote by V(f) the set of non-zero values taken by f when the variables take

values in k.

lemma 2. Supposethat b € V(f) and c € M(f£).

Then be € V(f).

Mor if

b = f(d) d = (d,,.--,dp) djek

 

  

 
 



and

(Tx) = cf(x),

then

be = f(Td).

We nowreturn to sums of squares, write

On = n(x) = x9 +... + x2,

and enunciate

Theorem 3. (Pfister). Suppose that nis a powerof 2.

Then

M(¢n) = V(¢n)

If we can prove Theorem 3 then weshall have obtained Theorem 1 as well, since
Gy is just an alias for V(¢,) and since M(¢y) is a group by Lemma1.

The key to Theorem 3 is

Lemma3. Suppose that d € M(¢,) and that 1 +d =0.

Then (1 + d) € M(d,,).

For

$ on(X) = $y(x’) + bn(x”), (2)

where

x= (x1, eos »Xon),X’ _ (x, eee »Xn),X” aad (Xn41> ths »Xon)-

Here $,(x”) is equivalent to d¢y(x”) and so ? on(xX) is equivalent to

W(x) = by(x’) + doy(x”).

After the last sentence of Lemma1 it will be enough to show that (1 + d) € M(y).

But now

n

(1 + d)y(x) =(1 +d) YY (xf + axt,,)
j=1

2 2
(yj + dyn+j)II

Ha
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where

Yj = Xj — WX; Yn+j = *j + Xn4j (i= j=n).

'his completes the proof of Lemma3.

We also enunciate the trivial

Lemma 4, M(¢y) . M(o on):

(his is an immediate consequence of (2) and the definitions.

We now revert to the proof of Theorem 3 in which n = 2™ is a power of 2. We use
induction on m and shall therefore assume that V(¢,) = M(¢y) and deducethe cor-
responding equation for 2n. Trivially 1 © V(¢.5n) and so in any case Lemma2 gives

M(¢ on) © V(% on)-

On the other hand it follows from (2) that any c € V(¢oy) has oneof the two forms

(i) c¢=c, € V(by)
(ii) €=¢, +5 C1,Co © V(bp).

In the first case we have

Ci, ¢ V(on) = M(on) © M(4 on)

by Lemma4 and the induction hypothesis. In the second case we have C,,C» ©
M(?,,) by induction, and so

c=C, +c, =c,(1 + d)

where

wince M(gy) is a group (Lemma1). But now c, € M(? on) by the first case andi +d
« M(¢9n) by Lemma 3. Hence c = c,(1 + d) € M(¢an) Since M(¢ gn) is a group. This
concludes the proof of Theorem 3.

Theorem 3 has an interesting consequence about the structure of a field k. Consider
the integers n such that —1 € Gp. (We recall that Gy = V(¢y) is the set of non-zero
elements of k which are the sums of n squares.) It is possible that —1 is not in Gp

for any n: in which case we say that k is formally real and reject it as uninteresting
in the present context. Otherwise there is a least s = s(k) such that —1 € Gg. We
call s the stufe of k. An alternative definition of s is that it is the smallest number
such that there exist b,,...,bg,, in k, not all zero,such that b? +... + b&,, = 0.

lemma 5. Suppose that G,(k) is group for some given integer n. Then either s =n
or §s = 2n.

l’‘or suppose, if possible, that

n<s<2n

and that

 

 



Then

c+d+o0

where

c=b7 +... + bg © Gy

d=1 +b, +... + bg eG.

[How do we knowthat c + 0,d + 0?] But then

—l=c"1deG,

by the group property. This contradicts the minimality of s.

Theorem 4. (Pfister.) If k is not totally real then s(k) is a powerof 2.

This follows at once from Theorem 1 and Lemma 5.

Theorem 5. (Pfister.) Let S be a power of 2. Then there is a field k — kg suchthat

Let n be any integer in the range

S<n<as.

Let K = R(x,,...,X,) where is the real field and x,,...,X, are independentvari-
ables. Our required field is k = K(y), where y is defined by

y7+x¢#+... +xZ=0. (3)

By (3) we clearly have s(k) < n and so

s(k)<S (4)

by theorem 4 and since S is a power of 2. We have to show that there is equality in
(4). If not, we should have a representation

S-1

—1= ) bj (bj ek).
i

On putting

bj = ¢j + yd; cj,dj € K

we deducethat

2 2 2
—l =}, cj + y ), 4,

or say,

ut+y2v =0



where 2

u=l1t 2,8 € G,(K)

v =) dj © G,(K).
lhut now

—y? = u/v e G,(K),

using again that S is a power of 2. Thus we havefound a representation of

—y2=x7 +... + xf

as the sum of fewer than n squares in R(x,,...,Xp). And an old theorem of mine

atates precisely that this is impossible. (It would makethis note too long to give
u proof here. Although intuitively 'obvious' it is more difficult to prove than you

might think.)

We are now in a position to prove Theorem 2, which the author has not lost sight of
even though the reader has. It states that if n is not a power of 2,then there is some

fleld k such that G,(k) is not a group. Since n is not a power of 2,there is a power of

2, say S, such that

n<S< 2n.

Wetake for k the field given by Theorem 5 for which s(k) = S. Then Lemma5 shows

that G,(k) is not a group.
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The paper of mine which I referred to is
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Where are the Zeros of Zeta of S?

Professor Apostol has very kindly given us permission to reprint his song, which is

to be sung to the (?) well-known tune of 'Sweet Betsy from Pike’.

Whereare the zeros of zeta of s?
G. F.B. Riemann has made a good guess,
They're all on the critical line, said he,

And their density's one over 27 log ?.

 

   



This statement of Riemann's has been like a trigger,

And many good men, with vim and with vigor,
Have attempted to find, with mathematical rigor,
What happensto zeta as mod ¢ gets bigger.

The names of Landau and Bohr and Cramér,

And Hardy and Littlewood and Titchmarsh are there,
In spite of their efforts and skill and finesse,

In locating the zeros no one's had success.

In 1914 G. H. Hardy did find,
An infinite numberthat lay on the line,
His theorem, however, won't rule out the case,

That there might be a zero at someother place.

Let P be the function 7 minus li,

The order of P is not known for x high,
If square root of x times log x we could show,

Then Riemann's conjecture would surely be so.

Related to this is another enigma,
Concerning the Lindeléf function p(c)
Which measuresthe growth in the critical strip,
And on the numberof zeros it gives us a grip.

But nobody knows howthis function behaves,
Convexity tells us it can have no waves,
Lindeléf said that the shape of its graph,
Is constant when sigma is more than one-half.

Oh, where are the zeros of zeta of s?
We must know exactly, we cannot just guess,

In order to strengthen the prime-number theorem,
The path of integration must not get too near 'em.

These lines stimulated some unknown bard in DPMMSto post the following lines on
the notice-board, entitled 'What Tom Apostol Didn't Know’:

Now André has bettered old Riemann's fine guess
By using a fancier zeta of s.
He proves that the zeros are wherethey should be,
Provided the characteristic is p.

_ There's a moral to draw from this sad tale of woe
Which every young genius among you should know:
If you tackle a problem and seem to get stuck,

Just take it mod p and you'll have better luck.

Both Eureka and Prof. Apostol would be very glad to learn the identity of the
author.
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Optimal Card-Shuffling

by M. J. Mellish

One shuffles a pack of cards by dividing it into two portions and merging them onto a

(lat surface by riffling with the fingertips. The problem that concerns us is: How

inany times do we haveto do this before the pack is perfectly shuffled, and what

exactly is the best method of shuffling? A pack of cards is said to be perfectly

shuffled if either (i) All possible decks are equally likely (this is what we require
for patience) or (ii) All possible deals of the deck into hands are equally likely
(this is what we require for Bridge). The object of this paper is to find an explicit

solution of the problem in case (i) and give some guidelines in case (ii) which may
enable some interested reader to solve the problem in that case also. We will start

by proving some subsidiary results after noting that any sequence of shuffles of a
pack of N cards can be regarded as a random permutation of the integers from 1 to

N.

lemma 1. If D(i),i = 1,K is the set of decks which can arise from shuffling a

wiven pack once, and if there exist x(i),i = 1,K such that x(i) > 0 and yx == 1,then
i=

(here exists a shuffling strategy under which prob(D(i)) = xj.

, roof. Define Pj ,(@) = prob(a, L|a@),where a is a sequence of form like (L,R, R,
, HiTs, Tey oo wes ) felling us whether each of the first (j — 1) cards fell from the right

or the left. Then the shuffling strategy is defined by the Pj,(a). Let S(a) be the
subset of D(i) which corresponds to shuffles beginning with’a (the reader should
satisfy himself that the obvious correspondence between shuffles and decks is 1 — 1).

Then we set

Pju(@) = )) x ), Xi
(i: D(i)eS(a, L)) (i: D(i)eS(a))

A simple inductive check showsthat this is the required strategy.

lemma 2. There is a one-one correspondence between decks obtained by shuffling

u new pack of N cards m times or less and sequences aj,i = 1, N satisfying:
 

(i) 1< aj < N

(ii) i = j implies a; = aj

_ (iii) aj can be expressed as the union of p subsequences bk , all of which satisfy
iL

L

bt — bk = 1,wherep is not greater than 2™,

Proof. Label each card of the new deck with an integer from 1 to N, starting from

(he top and working down. Then any deck after m shuffles can be represented asa
iequence satisfying (i) and (ii). Further,the 2™ subsets of the deck such that two
elements of the same set werein the same portion of the pack after every cut (some

of which sets may be empty) correspondto the subsequences b*.» for a shuffle can-
not change the order of such a subset.    



Conversely, suppose we are given the subsequences be we may assume without loss

of generality that each sequence be is the maximal subsequence satisfying (iii) and

containing bi (otherwise one would concatenate subsequencesuntil this were true).

Define a vector v(k), the number of whose componentsis the least integer greater
than or equal to logyp, such that vj(k) is the coefficient of 2!~1 in the binary expan-
sion of k — 1. Assumealso without loss of generality that bk is the least number

1

j=k-1
not equal to one of U b] by ordering the subsequences in a canonical manner,

jer“
Then corresponding to this sequence a; we define a sequence of —int (—log.p) shuffles

and the sequences Ly are all in the top half at the j'th cutif VN 1-3 (k) 0 and areall

in the bottom half otherwise. A simple inductive argument(left to the reader) shows
that such a sequenceof shuffles exist and is unique. Further,as p is not greater

than 2™, — integer(—log,p) is not greater than m.

We now proceed to define a sequence on optimal shuffling procedures P,,P,..Py

such that, if {D,(i),i = 1,kn} is the set of all decks which can be obtained by shuffling
a new deck n timesor less, then all the D,(i) are equally probable after the success-
ive application of P,....Py. We now define Py inductively; let P,....Pp_, be per-

fect shuffles and let M,(j) be the number of elements of Dy-_ (i), i = 1,kKp_, which

can give rise to D,(j) after a single cut and shuffle. Let {Dy(ky, ;),j = 1, Lp,c} be
the set of all decks obtainable by a sequence of n shuffles in which C wasthe last cut,

Then we define the probability that the cut in P, is C to be

2,  (M,(j))7?
j=1 9 Ly 3C

and by applying Lemma 1 we can construct a shuffling strategy such that

1prob (cut = C, deck = Dn(Ke, ;)) =

K
n
‘

Mn({Kc.;)
9J

summing overall possible cuts we get prob (deck = D,(i)) = 1/ky. Thus we have
defined a Py. The reader might care,as an instructive exercise, to work out P,,the
optimal procedure for the first shuffle.

It is now easy to see that the smallest number of shuffles necessary to randomise a

pack of N cards completely is —int(—log,N). For by considering the deck in which

the original order of the pack is reversed and applying Lemma2 weseethat Dy(i),

i = 1,k, is the set of all possible decks if n is not less than —int(—log,N) and in this

case P,P,P.....P, will perfectly shuffle the pack. This is a nice result and is

what one would expect from elementary information theory.

The corresponding nice result for case (ii) mentioned in the introductory paragraph
would be that one required —int(—log,M) shuffles, where M is the numberofplayers.
Unfortunately the nicenessof the result is spoiled by the fact that it is false; the true

value is —int(—log,(f(M,N))) where f(M,N) is the least f such that for any M hands

of N/M cards Hj, j = 1,N/M,i = 1,M there exists a sequence a; of N integers as de-
fined in Lemma2 with the number of subsequences b¥ less than or equal to f(M,N)
and also

U gt Q(i+j
jJ=15N/M Jo j=0 (+i)

10

 



Unfortunately it is not clear how f(M,N) can be evaluated; all that is clear is that
M - {(M,N) =< N. Perhaps one of our readers would care to earn himself a place in
(he hearts of bridge-players everywhere by solving this problem?

Autobiographical

by W.L. Ferrar.

| came up to Oxford in October 1912 as a mathematical scholar of Queen's. The
cily was vastly different from what it is now. Horse-drawn buses and trams provid-
ed the public transport. Trams ran along the Corn and stopped at Carfax, where the

llorses were unhooked from one end of the tram and led round (in the road) to the
other end. The pedal bicycle was ubiquitous, though the occasional 'blood' sported

i motorbicycle. Inside the colleges life was much the sameasit is now; though

(here were many minor differences from today—for instance, we took all meals save
dinner in our own rooms and our baths at Queen's weretaken in hip-baths in a large

communal bathroom which,at about 4 p.m.,was a social centre of college life—the

yeneral atmosphere of a college, apart from the presence of young women wandering

{reely about the place, was much the sameas the atmospheretoday; the same groups,

(he same shouts, the same plethora of societies and clubs, the same mixture of
idleness and industry.

Maths. Mods. was then, as now, the first mathematical hurdle to be jumped. Perhaps

u glance at their subject-matter may be of interest. There wasthe old 'classical'
ulgebra, with its theory of equations and congruences, some theory of numbers and

determinants, but no matrices (a word unknownto the undergraduate of that day);
lsurnside and Panton and somedips into Salmon were accepted texts, while some of

us struggled with parts of Chrystal's Algebra. A considerable skill in analytical
conics was essential, together with some knowledge of the invariants of related
conics. There was a fair range of pure geometry; it included geometrical conics
und the geometry of triangles and circles on the pattern of 'a sequel to Euclid'
(e.g. the nine point circle, inversion, reciprocation and coaxal circles). There was
ulso projective geometry and, contrary to what later detractors have scathingly

declared, one did not get far if one's knowledge was confined to a glib quoting of the

circular points at infinity. Curvature, asymptotes and curve tracing (a demanding
vame of skill in the harder specimens) completed the picture. Trigonometry occupi-

ed much moreterritory than it does now, that is, if it survies at all; Hobson's trigo-

nometry of triangles and quadrilaterals, infinite series and products and (unknown
(hese forty years) spherical trigonometry. Our calculus wasin state of flux.
llardy's Pure Mathematics had appeared in 1908 and a translation of Goursat by
Hedrick was also on the market. So our calculus at school had begun with ‘little

l'dwards', progressed through masses of techniques and extensions in 'big Edwards'
und was started down a fresh road with a study of Hardy or (for some) Hedrick-
CGoursat. The examination naturally reflected both the old techniques of Edwards'
day and the new Hardy approach. The applied mathematics was the conventional
utatics, hydrostatics and dynamics done without vectors—these we had heardof,I

think, but the wearisome fight about notation had not yet resolved itself and I knew

of no one who used them in 1912.

11
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Almost immediately after Mods.I was sent by my college to do a Long Vac.term at
Cambridge. This was done so that I might improve my chancesof 'getting the

Junior’ and,in the event,I scraped home by a narrow margin. The examination for

the Junior Mathematical Scholarship and Exhibition was held just before Hilary

term and any serious candidate needed to start work on it early in the Long Vac.

The range of the examination was Mods.plus a goodly slice (undefined asfar as I ever
knew) of Finals work. The questions were meant to be difficult—and were. It was no

uncommon thing for a minor scholar or an exhibitioner to score zero marks ona

paper; it counted as no grave disgrace. I remember something of my own marks}
the worst was 19 and the best 120. I was always, in examinations, liable to have two

papers like that, one well above my normal form and one abyssmally and unbeliev-
ably bad. At Cambridge I studied under G.N. Watson, then a young don of Trinity.
For the most part I read Bromwich and struggled with former Junior papers.

Watson (a past master of his art) was more than once floored by the question I had
asked him to do and was obliged to postponeits solution until the next tutorial.

In 1914 camethe war. I joined the ranks of the Territorial Field Artillery (15
pounders from the Boer war) and went to Francein the spring of 1915. I took two
mathematical books with me and studied them from time to time—in all sorts of odd
surroundings. The time came for the battery to move down towards the Somme.I

was a Signaller, loaded with telephone, signal-flags, a rifle and what have you; there
was no room in my kit for books and, with a solemn hymnof hate to the Kaiser (a

frequent accompanimentto any action forced on one by the exigencies of war) I
threw the books over the hedge. I kept a set of old examination papers and at rare

intervals refreshed my mathematical memory by working a question or two.

After the war I returned to Oxford. I arrived in April 1919 and was called upon to
take my Finals in June 1920. After nearly five years of soldiering I had fifteen
months in which to prepare to face my Finals examiners and when,in the early days

of my demobilisation,I first tried to do some analysis I found that my memory had

developed huge gaps; there was nothing for it but to revise from page one of an

elementary book on the calculus. I learned in that fifteen months how to keep to the
essentials, to leave the frills and to select what parts of the syllabus I had any hope

of mastering. I did a first reading of the whole syllabus, but in my revision work
before the examination jettisoned large parts of it. The policy served me well save
in the advanced geometry paper. This covered solid geometry and higher plane
curves. I banked on the solid and read very widely; the examiners set a couple of
quite elementary solid questions and reserved all their teasers for higher plane

curves;I scored 6+++. Incidentally, the syllabus for the three advanced papers on
the pure side was, as far as I ever knew it,(1) Algebra and Analysis, (2) Geometry,

(3) Analysis. The present-day meticulous detail of notes on the syllabus was com-
pletely absent.

There were but few awards available for graduate study in those days and in my year

there were none. By great good fortune I secured the post of assistant lecturer at

Bangor, North Wales; initial salary £250 per annum. I lectured there for four years,
during which timeI published my first research paper, married and gained my

Senior Mathematical Scholarship. I was then invited by Professor E.T. Whittaker to
becomehis senior lecturer at Edinburgh and for one year I revelled in the lively

research atmosphere of the Edinburgh Mathematical Institute. Whittaker himself
was the main source of inspiration; there has,in my view, never been his equal in

that regard. In 1925 I returned to Oxford as a Fellow of Hertford. I was torn be-
tween a desire to continue my Edinburgh life, with relatively light teaching duties and
great insistence on study and research, and the kudos of an Oxford fellowship. I
chose the latter and,in spite of a much increased teaching load, contrived to publish
two or three research papers a year. For the first twelve years or so of mylife at

Oxford I was primarily a mathematician, tutoring, lecturing and researching, serving
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us a secretary of the London Mathematical Society and as an editor of the newly
founded (1930) Quarterly Journal of Mathematics (Oxford series); and (I cannot
resist the temptation to cry my own wares) I lectured on matrices before they were
udmitted to the Oxford syllabus.

| avoided internal college administration for as long as I could withstand the pressure
on me to become involved. In 1934 came myturn as Senior Tutor, but the duties were
light and interfered only a little with my other work. A year or two later I resolved

(o write my first book, Convergence. Half the incentive came from the fact that I
had becometired of seeing my pupils fail so dismally at understanding what it was
ull about. I finished the book in November 1937. In the December of that year came

4 turning point in my career. The Bursar of Hertford,a young economist, had been
usked to serve under the League of Nations at Geneva for a period of two years and

(hree months. I agreed, somewhat unwillingly, to act as bursar during his absence
und on the strict understanding that he would resumetheoffice on his return. Within

eighteen months the war came;the Bursar did not return to Hertford, but was called

'o a senior post in the Cabinet Secretariat;in short,I was firmly established as the
hursar of a small college. The prime moversin the founding of the Invariant Society,
Whitehead and others, were out of Oxford. I was middle-aged and wasleft in situ.
| became President of the Society and most of the wartime meetings were held in

llertford. We did nothing spectacular, but we kept the society active throughout the

war.

 

 

lity accident rather than by design I became,in the early days of the war, secretary

of Domestic Bursars, was pressed to stand for Hebdomadal Council and, almost

inevitably once my feet were set on that road, becameinvolved in university affairs;
Council, Science Faculty, General Board, the Chest and several others, less central,

uctivities. For two years I was vice-chairman of General Board and for another few
years chairman of the Chest Finance Committee. My research languished under the

load. On the other hand, I soon discovered two facts about myself; the first, having

written one book my fingers itched to write another; the second, whereas the multi-
tude of administrative duties impeded my thinking about researchtopics, the quiet

concentration on writing a book about subjects that I had already mastered was a
pleasant relief from the fuss and bother of dealing with administrative problems.
In short, I became a writer of text-books rather than a researcher andI often feel
that I have had the best of both worlds in this matter.

The writing of my Finite Matrices (1951) was a touch more demanding. I resigned
from the Chest in order to cope with it and for a while I was less occupied with

university affairs;I was still bursar of my college, of course, and continued to
(utor, lecture and examine. In 1959 I became Principal of Hertford. The head of a
college may be called upon to do muchorlittle;I was called upon to do much. Among

other things, most of the detailed handling of the negotiations about the Indian Insti-
(ute and of the Hertford appeal for funds fell to my lot. I wrote but little until my

last two years of office when, with some leisure accruing, the itch to write mathe-
matics again beset me and I started work on my Mathematics for Science. In June
1964 came retirement;I was nearly 71 years of age. Since then I have published two
hooks, but I have now signed off. The new topics of university study, the new angle
of attack on the whole subject of mathematics and the new jargon about matters that
| knew of old but described in quite different terms warn methat anything I might

write would be out of date and a waste of effort.

| have had someforty to fifty years of close association with Oxford mathematics—
i( has a quality all its own—I have crossed swords with many people, have supported

und encouraged many others and can look back on a full mathematical life that I
have most thoroughly enjoyed. After seven years of retirementI still read a little
inathematics, some old and somenew,and, with the arrogance of an aged professional,
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curse the writers for their occasional lapses into obscurity. If you write a text-
book, you must read your manuscript at least once with the sole object of trying to
misunderstand it and even then clarity will elude you!

Annual Report of the Archimedeans

by K. A. Moore (President)

The year 1972-3 was again a highly successful year for the Archimedeans, muchof
the credit being due to the amount of work put in by committee members. The

year's talks were of high standard and very entertaining.

The Friday evening meetings tended to be in traditional style, and included Dr.I.

Stewart (Warwick) on Catastrophe Theory, (which has interesting applications to the

sociological 'boy meets girl’ problem) and a more unusual evening when Dr. J.H.

Mason (Open University) turned his audience into a problem solving group!

 

Following the successof the first ever lunch meeting in the previous year, these

replaced tea meetings for this year. Speakers included Prof. Swinnerton-Dyer talk-
ing on Tripos, past and future, in which he managed to convince usthat the present

system is infinitely preferable to the older forms of examination.
 

In the Michaelmas term the traditional visit to Oxford,to play games with the In-

variants, took place and was,as usual,a most enjoyable trip. To conclude the term,

an 'Archimedes Bathday Party' was held. In the Lent term the Invariants paid us a
return visit, for a problems drive, which conformed completely to tradition.

Going back in time to June 1972 the annual ramble (postponed from the end of April

until after the exams, owing to apathy) was well supported, and two people actually

reached the destination (Stretham). Following this precedent the 1973 ramble is
also taking place in June, after exams. The annual punt party to Grantchester was

the usual success, with one of the punts being sunk, and for the first time a croquet
afternoon took place. This is to be repeated in 1973.

Next year the Friday evening speakers include Dr. D.J.A. Walsh (Merton) on
Problems of Combinatorial Optimisation, and Prof. K. Harada (SRC Visiting Fellow,

Cambridge), on Classification of Simple Groups of small 2-rank. As last year's lunch
meetings were so popular, these are to be continued, and speakers will include

Dr.J.H. Conway on The Least Uninteresting Number and Mr.R. D. Harding on

Computers in University Mathematics Teaching.

 
 

 
 

Last, but not least, the society's triennial dinner will take place next November, and

Lady Jeffreys and Prof. Swinnerton-Dyer are to be our guest speakers.

Annual Report of the Snaedemihcra

by Andrew White (Secretary)

For our first meeting of the year we were extremely lucky to obtain Dr. J.B. Rhine,
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of Duke University, to speak on ESP—Fact or Fiction? Very regretably, Dr. Rhine

was involved in a motor car accident while driving up from London, and waskilled.
Manfully, he spoke nevertheless, but although we are grateful to him for this I must
nay we found his arguments in favour of ESP unconvincing.

 

Our second meeting was a most interesting talk from Dr Variola on Topology,
Klein bottles, and MobiusStrips.

The annual Debate featured Professor Lyttleton (against) and the vocal Professor
Dingle (for) the motion that 'Special Relativity is Wrong'. Professor Dingle present-
ed the arguments which he has presented in The Times and in Nature, tending to
disprove Relativity. (It will be recalled that the Editor of Nature claims to have
received a different exposure of Dingle's fallacy from almost every physics Ph.D.
in the country, but has declined to print any of these, feeling perhaps that Dingle's
error is too silly to deserve pointing out). Professor Dingle showed a curious
inability to move from one frameof reference to another so as to appreciate other

people's points of view. Professors Bohr and Bondi were present, but repeated their
previous public statements that they disdained to point out Dingle's error and would
not comment. Dissatisfied, we questioned the slightly aetherial presencesof

Vrofessors Newton and Einstein. (Although everybody knows that Newton wrote more
{han any one normal person could, and although everybody knows howstrikingly dis-

similar the four well-known portraits of him are, we had not known before he appear-
ed that he was vector valued, like the prophet Isaiah, having four separate bodies,
one to each portrait). He said that if he had seen far,it was by standing on the

shoulders of giants; it seemed to him likely that God in the beginning had created

lim in the likeness of Isaiah, and so he would not deign to comment. A disagree-
ment then broke out, with three of the components claiming that they could not have

heen created by God in the beginning because they were clearly Trinity. An infinite
sea appeared by the condensation point in the corner of the room, and the fourth
Newton began to gurgle and cackle over the pretty pebbles and shells on the beach

unnouncing after a while, that—perdition on the editor of Nature—he was proprietor
of nature. He did not believe in the Trinity but would not comment. Professor

l'instein said that if he had seen far it was by standing on the faces of Poincaré

und others; he was a simple man, and could not understand Dingle. He would not

comment. In the absence of the expert opinions we wanted, the meeting declined to
vole. The proof of the correctness of relativity is left as an exercise for the reader.

  

 

lyr Rubeola gave an interesting talk the week afterwards on the Kénigsberg Bridge
problem and rubbersheet geometry, though the material was slightly familiar to us.

The following proposed joint meeting on Cardinals was cancelled at the last moment
because of a misunderstanding with the Jesuit debating society over the venue.

Another confusion, however, can now be cleared up;as a few suspected at the time,
ihe speaker at the Lucasian lecture on hydrodynamics was Ronnie Barker.

lyr P'ong almost proved to nearly everyone's complete satisfaction the almost
breathtaking theorem that it was almost certainly vaguely-true that in China,all

integers are equal; since the integers are countable, this is certainly true presque
partout, After this there was a joint discussion (pace the Mid-Anglia drugs squad)

on the Hardy-Weinberg Law with the Genetical society; we waited and waited, and
wiited for something to happen between our Chi-Chi test and their shaggy stuttering

I'-{-test, but nothing did, so we debated Is sexual reproduction necessary to maintain

within-species variety? After some experiment we voted that 'sex is not necessary,
but it is certainly sufficient’.
 

The epoch arrived for our yearly time trip. As is well known,the intuitively -desired
properties of 3-dimensional measure are such that if these are given to the measure

of arbitrary sets, it is possible to dissect the sphere of unit volume into two genuine,
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identical spheres, each of unit volume. We heard of use being madeof this by a

self-taught prodigy at a very early date, so thirty of us set out to visit him. This
person—regretably we did not catch his name—certainly had apprehended these pro-

perties of measure, and demonstrated them rather neatly and vividly, we thought, to
his lecture audiences by taking objects from the audience—weprovided the contents
of 'our' lunch-packet—and multiplying these without limit. Neither our bread nor our
fish was in any way tainted or de-natured by replication.

Unfortunately he proved, as so many great men of humble origin do, to have rather a
sensitive temper, and taking exception to some quite harmless question about his
parental background, became angry, and drove us by sheer strength of his anger
from our host-mind into a herd of pigs. We were so put out that we clubbed together
and put a pound each towards suborning an official to get him nailed in some way.
Many of us have since regretted that we have cut short a promising career so

hastily.

We arrived back in good time to hear the quite fascinating talk from Dr Varicella

on Pulling socks inside-out and other facets of recreational topology, although one or
two aspects were quite familiar. After that we went shoplifting, andachieved 12.5 cm,a

new record. Dr Papule gave a popular talk on circular stochastic queues (in which

customers enter queue A for partial service and to queue B; from thereto C.... and
eventually from Z to A), A-level mechanics, orbits, Sturm~Liouville theory, and
Green's functions, under the general heading Futility, gloom, and despair; some topics
of Sartre's existentialism. It was shortly after this that our then secretary, Kevin
Hohenzollern-Sigmaringen-Linden-Boggs had his tragic accident. As you will re-
member, he tripped over a pole in King's Parade, and falling through the slit in the
imaginary cut-plane, slithered round and down and down and round the Riemann
surface of log(z), corkscrewing into the previously solid ground towardsinfinity
and scrabbling desperately to retain some grip on the frictionless surface; the party
of physicists who were eyewitnesses said that it was not a pretty way to go. However,
we have some good news here. A working party of philosophers have examined the
matter, and assure us that this event COULD NOT HAVE OCCURRED. Wehave
posted a copy of their report to Kevin—downthe cut-plane slit—and we are sureit

will be a great solace to him.

The final meeting of the year was a talk by Dr Dengue on Doughnuts, teacups and
Mobius bands. Although the material was fairly familiar to us, the talk was very well
attended and warmly received, which made the announcement the next morning that
Dr Dengue had been found brutally murdered all the more painful, so that we are
more than happy to help in correcting a rumour which has circulated. As the cir-

cumstances of the murder—Dr Dengue was wrapped in a rubber sheet, with a dough-
nut-shaped rubber quoit constricting his neck—have suggested an. obscure sexual
fetishism of some sort, we are asked to point out that contrary to what the police
stated, the book on genetics in his pocket was a treatise on statistical domination.

And now, Oxford. It still seems strange to us that our carefully planned experiments
in spectral representation could have gone so wrong,but, alas, they did, and I regret

to announcethat for the third year running the Invariant Society has declined to
allow us to visit them, for fear of a repetition of the last visit. They maintained this
refusal despite the evidence your committee presented to them that over thirty
thousand of the people who lost their souls were undergraduates, or working class, or

otherwise of no account; their whole attitude is very irrational.

 

As a consolation, however, we have recently acquired the body of Herman Kahn,the
50 stone American think-tank expert, who, on eating an unusually heavy meal suc-
cumbed to the gravity of his work, and collapsed below his Schwarzschild radius.

With the aid of a special amplifier his unanswerable cries of anguish can be clearly

heard—it will of course take an infinite time for the pain of the collapse to fade—and
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ao we felt it would cheer everyone up to display him. Which we are doing. (Arts

School, Bene't Street, 2-4 pm, admission 5p).

inally, our president, Dr Faust,is retiring, emigrating, and has announcedhis
engagement, after the imminent death of his first wife,to Dr H.de Troy. Dr Faust

wishes to deny utterly any connexion between his emigration and thetheft of the
number whose nameis written 2 149 623 778 426. (This slightly counter -intuitive
theft is now confirmed. We do not suppose that objects whose names we can copy,

such as ‘unicorn’, are actually present in the world, and so it should be no surprise

that, although we can copy it, actual count, now completed, shows the numberitself
to be missing). We wish Dr Faust all the best in his new wife in Canada.

Instabilities due to Dissipation

by E. J. Hinch

Dissipation is the degeneration of a useful resource. The loss of kinematic energy
by friction and the loss of potential energy by the diffusion of density differences are
{wo common examples. Inevitably there is some dissipative process which extracts

the excess energy of any oscillation about an equilibrium in a straightforward

system.

Intuitively one could reasonably expect that adding some dissipation to an already

stable system, i.e.a system in which disturbances always decay, would only enhance
the system's stability. But is stability naively additive? No; the real world can be
more cunning than one's immediate intuition, as the examples below will reveal. A
stable equilibrium need not be quite so straight forward, but may represent a pre-

carious balance in which the stabilizing influences exceed some constrained de-
stabilizing forces. The addition of dissipation can possibly do more damage by

upsetting the delicate part of the balance than by strengthening the stabilizing factors
in other less important parts of the balance. The destabilizing forces can be re-
leased from their constraint without being overwhelmed by the additional dissipation.

To produce a counter-example to our misleading intuition we need only look to
linear first order systems. With the state of such a system described by a vector
x, the appropriate evolution equation is a linear relation between the rate of change

of the state vector and the state vectoritself.

x = Ax

Most physical systems can be put into first order form with some ingenuity, in

general with a nonlinear operator A. Linear systems are relevant as approxima-
tions for small disturbances about an equilibrium. The concrete examples will be
finite-dimensional where x can be thought of as a column vector and A a square
matrix.

A system will be called stable if the real parts of all the eigenvalues of the opera-
tor A are negative. Any disturbance will eventually decay in such a system. A
system will be called dissipative if A is stable and is self-adjoint, in which case all
the eigenvalues are real and negative. The extra condition of self-adjointness en-
sures the bilinear form xAx is negative definite, or in physical terms dissipation
extracts energy.
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Wenow disprove the proposition that given a stable S and a dissipative D then A =
s + wD is stable for all positive scalars .. The eigenvalues are certainly not addi-
tive in general. [In fact one should be prepared for the most unpleasant parametric

dependence of eigenvalues.| One can establish that if p is small then A is near S and
stable, and if » is large then A is near uD and stable. This is, however,no guarantee
that A is stable at intermediate yp.

Consider the two dimensional counter example

—4 -—-w —4 0

S(w) = D=

WwW 2 g =]

D is dissipative, and S is stable if w? > 8. If S is not too stable, 8 < w2 <9,then A
is unstable at the intermediate values of p,(2u —1)2 <9 — w?.,

The trick in this example is the spin w of S—its antisymmetric part. An exercise

left to the reader is to show that A would be stable if S were symmetric, i.e. dis-
sipative. Without the spin, the chosen S would be unstable through one normal mode

although it is more stable in the other mode. The addition of the spin constrains
the instability, sufficient to suppress it if w2 > 8. The essential effect of the spin

is seen at slightly higher values, w? > 9. Beyond this critical value both modes

rotate about the origin as they decay. As they rotate they averageout the stabilizing
and destabilizing forces, each mode therefore decaying with its half of the net
stability 4,(—4 + 2) =—1. The additional dissipation was chosen to enhance the
basic stabilization more than it detracted from the basic destabilization. If the spin
is stabilizing but not too strong, 8 < w? < 9,somestrengths of the additional dissipa-
‘tion can arrest the spin and releasethe inherent instability from its spin constraint

without being sufficiently strong to stabilize the system.

A physical example of dissipative destabilization is the phenomenon of salt fingers.

Salt-fingers are an important mixing process of heat and salt in the oceans. An
analogous mechanism mixes hydrogen and helium in certain parts of stars. The

problem involves hot salty water overlying cold fresh water. In the initial system

the stabilizing temperature effect on the density exceeds the destabilizing salinity,
so that the heavier water is underneath. The addition of thermal dissipation, which

tends to equalize temperature differences and acts much faster than the diffusion of

salt differences, can release the constrained destabilizing influence of the salt and
lead to unexpected vigorous mixing. A model of this process alongthe lines of
the counter-example may be easily constructed with three state variables; the verti-

cal velocity of a blob of water along with its temperature and salinity excesses above

the surrounding water.

Randomly Collecting Sets of Objects,
or... it's another Spear-Thrower!

by Colin Vout

In the days when you usedto find plastic Red Indians in cornflake packets,I had a

very great difficulty in obtaining a full set. By the time the sixth different one had
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\urned up we had about eight spear-throwers. It has long been my desire to wreak

vengeance on thesefree gifts, and what better way than to write a mathematical

article on them?

ll is easy to calculate the expected number of packets before you get a full set. If

ihere are m objects in the set then the expected waiting time for the first different

ted Indian after having i of them is m/(m — i);so the expected number of packets

m

needed for a full set is m »), *, which for large m is about m(log m + vy), where y is
i==I

luler's number. For six Indians it is 14.7.

The recurrencerelation for the probability of having i Indians from a set of m after

i packets is

m—i+l ji

Pi,m,n = m Pi-1,m,n-1 + m Pi,m,n-1

(o which the solution is

Pi,m,n=™! Vi, n/(m™(m — i)!)

i
1 1 ‘—_ Tie . : . *

where Vi,n =F At) (—1)1-Tr®; this satisfies Vj, n = Vi-1,n-1 + iVijn-1°

One can obtain a rather interesting identity by evaluating the expected waiting time

until a full set is achieved, by both methods. Note that the probability of achieving
!

1 full set on exactly the nth packet is ~~ Vy_1,n-1- Then we derive
m

m re)

De = in ea gn POD Came
=1 5 n=mMm r=1 mM

The numbers Vjp themselves are interesting. When written out a triangle they

appear to exhibit the same property as Pascal's triangle: that the numbers (except

those at the ends) in the nth row areall divisible by n if and only if n is a prime.It

is simple to show that in this triangle the ‘if’ holds. By Fermat's theorem,r™~1 = 1

(modulo n); and since we can write

1 ict, .
Vin=G-D!,Y, &” (—1)ita4k (ic + 1)n-1

where r =k + 1, we have

1 F ina, ,aiti-k
Vin=Gopr

ds

(ke = 0
(i—1)! KZ

The proof of the 'only if is that if n divides all the numbersin the nth line then

gn-1 3n-1

>

.,,,(n—1)8-1 are all = 1(mod n) which is impossible ifn has any

factors.
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1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

1 1023 28501 145750 246730 174487 63487 11880 1155 55 1

From this triangle we find that the median of the distribution of the probability forsix different items in a set occurs between the twelve and thirteen packets, abouttwo packets lower than the mean. After eighteen packets there is a four-fifthschance of having a full set.

All this working assumes a random distribution of Indians in cornflake packets. Thepsychological and game-theoretical complications of avoiding spear-throwers intenton capture would make a moredetailed analysis almost impossible.

Problems Drive

Here are someof the questions from the 1973 problems drive, the casusbelli forthe annual battle against the Invariant mathematicians of 'the other place’. The
questions were set by D. J. Aldous and N. H.G. Mitchell. The answers are on page 49.
I. There were 8 entrants for the prison tetrathlon (which consisted of 4 events:
pole vault, pistol shooting, wall climbing, mailsack race). In each event, the winner
got 7 points, the second 6 points, etc. There were no ties. The rules for choosing thewinner(s) were as follows: .

For all (i) if A beats B in 3 or 4 events, B is eliminated.
pairs (ii) Of those remaining, if A has a larger total of points than B,B is

eliminated.
(iii) Of those remaining, if A's sum of squares of points is larger than

B's, B is eliminated.

(a) How manyprizes did the prison Governor haveto buy, in order to be sure that
there would be one for every winner?

(b) How many,at most, could he have beenleft with after the prizegiving ?
2. A circle drawn on the Earth's surface is said to be imperial if the Sun never
sets on it, i.e. at all times throughout the year, there is somepointon the circle at
which the Sun is above the horizon. The Earth is a large sphere of radius R. The
angle between the equatorial plane and the plane of Earth's orbit is 0.

(a) Find the length of the shortest imperial circle in terms of R, 0.

(b) Specify an imperial circle which meets every other one in 2 points.
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4. Mr H. Urry works irregular hours in the City, finishing some time (at random)
between 4 and 7 p.m. He alwaystries to get home as quickly as possible. The

uvailable transport is as shown:

Office

15 mins. ——_» 0

walk Loo Trains leave A for B and C at 10 and 40
U7 o mins. bus ;

J u minutes past each hour.

BL-° A Buses run from 0 to A and H, and Mr.Urry
x 5 wing train has found from experiencethat the waiting

/ \ time for a bus is T minutes, whereT is
\ dom in 0 < T < 15, with unif

| 20 45 mins. bus yaneom , orm
\ mins distribution.

: Y How often does he catch a train?
Os mins. walkH

Home

4. In this alphametric, which is in the scale of 7,each letter stands for a different

digit.

DAMTP+
DPMMS= (S + 3)

MATHS

Convert into decimal notation: —_ (a) TMS

(b) ADAMS

». Current first class postage rates are as shown:
livery week, a Scotsman sends a haggis by first class Not over 2 OZ 3p

post. He minimizes the postage costs by subdividing 4 oz 4p

the haggis into several packages if necessary,but 6 Oz 6p
naturally he never cuts the haggis into more pieces 8 OZ 8p

than necessary. A haggis may weigh any whole number 100z 10p
of ounces up to 5 lbs. 120z 13p

140z 15p
ind: (a) The largest weight for which the haggis 1lb 17p

goes in 2 packages. 1lb8o0z 24p
(b) The smallest weight for which the haggis 2lb 34p

goes in 3 packages. Each additional 1 lb 17p

(Iynore cost and weight of wrappings).

6. When the Professor woke up surrounded by 3 savages, he naturally wonderedif
he was in danger of being eaten. He quickly realised he was on the mystical island
of Satisrevinu, where there are two indistinguishable tribes (who never intermarry),

the Ivyleaves, who alwaystell the truth, and the Redbricks, who always lie. He

elicited the following statements:

A: Bis my brother.

C is not my brother.
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B: Ihave no brothers.

There are no cannibals on this island.

C: A has no brothers.

B is the brother of no-one hereat present.

Was hein danger of being eaten, and who was who's brother ?

7. An Antigroup,A,is a subset of the strictly positive integers such that: If x,y are
members of A, then x + y is not a memberof A.

Find the greatest n for which the set {1,2,3,..... ,n} may be split up into three
antigroups, and exhibit such a division.

8. Laura Biding is driving along a clear road at 30 m.p.h.(the legal limit) and
approaching a green traffic light, which may start to change at any time. She knows

that her reactions are good, that her car's maximum braking and acceleration are 5
and 3 m.p.h./second respectively, and that the amber light is illuminated for 3 sec-
onds at a time. She always drives as fast as possible, subject to speed limits and
never passing a traffic light when the redlight is on.

(a) The light does in fact stay green. At what speed does she passit?

(b) How many seconds would she have been delayed if the light had beenred as she
approached, not starting to change until she reachedthe traffic detector pad
33 feet before the light?

9. The solution to this cross-number puzzle (in base 10) contains every non-zero

digit with one exception. What is the exception?
 

 

 

     

1 2

Clues: Across: 1. See 3 across
3. Eight times 1 across Vii

Down: 1. Perfect square ML

2. Not divisible by three. 3

10. Following Britain's entry into the Common Market, chess, like everything

else, has been decimalised, and is now played on a 10 by 10 board. Each player has
two extra pawns, and two new pieces, known as Deans, which can moveeither like a

Bishop or like a Knight.

(The pieces are shaped like sherry bottles, and start off between the Bishop and the

Knight.)

(a) Find the maximum number of Deans which can be placed on the board without

any Deans attacking any others.

(b) Find the minimum numberof Deans necessary to occupy or attack every square
on the board, and draw a diagram for this case.

SomeCritical Points

by Manfred Gordon

Variants of the statistical model here described have widespread applications in
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science and technology. I will touch on three applications because of their philoso-

phical interest.

Consider first a problem posed by the geneticist Francis Galton about 100 years

ago: the chances of survival of a family name. A simplified model makes the

following assumptions:

(a) The medieval first bearer of a newly invented surname was allowed exactly f

(rials to produce a male offspring to carry on the family name, and

(b) each of his descendents (if any) in subsequent generations was, is,or will be

allowed exactly f — 1 such trials before his death.

(c) Multiple male births are forbidden.

(d) A trial not resulting in a male birth is called fruitless (e.g. quintuplet girls).

(e) The chance a that a trial leads to a male birth is a constant,a measure of

fertility of the membersof a given family.

{lam here concerned with statistics. The reader interested in the individual trials

is referred to the relevant literature}.

The founder of a family name forms the sole male member of generation zero of

his family tree (fig 1). His male children(if any) form generation one, his male

vrandchildren (if any) generation two, etc. The expected (average) size (T) of a

family tree is readily found for our model:

Ww

(T) =), (np (1)
1=0

where (nj) is the average number of membersof generation i in a family tree with

a fixed f and a. And the nj are readily evaluated: ny = 1 because exactly one man

starts the family, and ng = fa, because he performsf trials, each with chance a of

bearing fruit. The expected numbernz,of the founder's grandsonsis fa[(f — 1)a],

because each of his sons is allowed (f — 1) trials with chance o of bearing fruit. And

so on:

(T) = 1+ fa + fa[(f — 1)a] + fa[(f — ljoaj? +... (2)

or (summing the geometric series):

1—a |
(T) ={——

a

(3)

Let us consider f fixed and examine how the average size (T) of a family tree

depends on thefertility parameter a. The function (T) (@) obviously has a singular -

ity as @ approaches from below the critical point:

a = 1/(f — 1) (4)

This critical point is readily interpreted qualitatively. The mean size of family

tree will be finite if a typical member of the tree (not the founder) produces on

average (f — 1)a@ < 1 sons,i.e. if a/&e <1. In such a case a memberof the tree

fails even to reproduce himself adequately on average, and the name must die out.

Even a fertility given by a = 0.99a¢ rarely produces a family which will last for

100 generations. On the other hand, if a = 1.01d¢, the average size of the family

trees is infinite. This does not mean that any individual such family cannot die out.

But each family then has a finite chance that its name will go on forever. This
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chance can be calculated to be, for example, 0.060 when a/a, = 1.01,f = 3. Thus

the critical fertility a@ is aptly named-—it has a critical effect on possible family
histories.

This singularity or divergence of (T) is typical of the class of cascade or branching
processes which produce a kind of family tree by repeated trials in each generation,

with some parameter correspondingto fertility. Such processes are of the Markov
type. The existence of a singularity is by no means linked to the peculiar mating
rule we have imposed. The reader is bound to have wondered why wepropose to

restrict each male to f — 1 matings, with an extra bonus for the founder of a name.
(Indeed, even in a country with a free press, how is obedience to such a rule to be

checked?).

The rule was chosen to produce family trees of a special simple structure. Fig. 1
brings out that our trees have points of only two possible valencies: each point of
valency f, called a node, represents a male individual; each point of valency unity,

called a terminal, represents one or more females,or just a happy memory. This

simple tree structure becomes specially appropriate when we switch the discussion

of our model from genetic to chemical applications.

The notion of valency of a point comes into its own in chemistry. Indeed, equation 3

was derived by P.J. Flory, the distinguished physical chemist, when he first iden-
tified the nature of the gel-point of a jelly-producing liquid about thirty years ago.

Galation is a critical phenomenon which happens with great suddennessin time, or
at a sharply defined temperature. Flory's explanation fits exactly the family-tree

type of model described, and experiments amply confirm the model. Atthis point,

I interrupt the argument to provide a

Crash Course in Chemistry for Mathematicians

An atom is a point. A bond is a line. After that, one gets by with ordinary graph
theory.

The Nature of Gelation

In reality, chemistry is far simpler than the crash course has madeit appear: large

groups of atoms can be contracted to a single, artificial atom, by means of graph

theory, because graph theory literally allows us to make rings around chemistry.

As shownin figure 2,a typical chemical jelly-former or 'monomer' is reduced,in
two stages—to the civilised form of a graph, on the right, which contains all informa-
tion relevant for our purpose.

A large number of such monomergraphs representthe liquid in the beaker at the
top of fig. 3. In presenceof a little acid catalyst a process can be switched on,

whereby the graphs begin to aggregate into the tree-like graphs shownat the bottom
beaker of fig. 3. Here the formation of a chemical bond (actually formation of an
ether group by elimination of water) is represented by the elimination of two termi-

nals plus the insertion of a line between the two nodes concerned, to restore their

valencies to f = 3. This process goes on many times, linking the graphs together
quite at random;and the reverse processalso starts up gradually, because bonds

can split as well as form. Actually, the bottom of fig. 3 is supposed to represent
the dynamic equilibrium which will exist when the bond formation and bond splitting

rates have comeinto balance, and each kind of topological tree has reached a steady
total number (concentration). The fraction of terminals which have been eliminated
in passing from the starting state in the top beaker to the equilibrium state in the

bottom beaker is denoted by a. Now choose a node at random in the bottom beaker

and plant it as the root of the family tree of which it forms part—e.g. the node marked
x could becomethe root node of the tree in fig.1. The reader will readily check
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(hat the genetic model from which we derived eg. 3 shares with the chemical model
of fig. 3 the same distribution of family trees, and therefore eg.3 dpplies to both.

l\y adjusting temperature or pressure, the chemist can select the equilibrium state

lotween bond formation and splitting, i.e. he can control a. If @ < d¢, he will obtain

\ liquid;if @ > @g,a jelly. At a = athe system is just at the critical point, the
vel point. It is easy to explain the physical phenomena qualitatively.

le resistance to flow of a liquid—its viscosity—is a measure of molecular friction.

I'he friction that any one atom experiences is proportional to the size of tree of

which it is a part: as the atom movesthrough the flowing liquid, it has to drag the
rest of the molecule along. Thus the viscosity is proportional to the mean size (T),

i.e. the mean numberof nodes, of a tree to which a randomly atom (node) is attached.

'hus the viscosity of a liquid is finite if a < a, (eg 3). It rises steeply as a
ipproaches Qe, and there it diverges: all flow stops at the gel point. As a increases
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further, beyond ad, the jelly becomes progressively tougher, its elastic (Young's)
modulus rises rapidly. This modulus is calculated from graph theory also, but this

is a little more advanced.

Life processes are generally observed to occurin the critically branched state of

matter ,i.e. close to, and on either side of,a gel point. If we look at the inside of a

cell,e.g.a raw hen's egg, we find just that messy state, somewhere between a highly

viscous liquid and a weak jelly.

 

If we study a chemical model system, such as our monomerin fig. 2, we find that at

a@ = 0.99a¢, the liquid has a viscosity somewhere around 10 poise, about that

of the cytoplasm of an amoeba. At a = 1. 02dQ@¢, the jelly has a modulus around

105 dyn/cm2, about that of a jelly-fish. It is easy to explain? why invariably Life is
in such a mess, but this is not the place. Suffice it to say that the gel point is closely
involved in the problem of the origin oflife.

A sobering thought

I turn to my third application, after genetics and chemistry. Let the root of the tree

in fig. 1 represent a neutron, which starts a chain reaction producing a cascade of

neutrons. Each of the neutrons in turn can producea litter of further neutrons on

the next generation, before its own energy is exhausted. Here the critical point is
controlled, not by temperature or pressure, but by the critical mass of the neutron

source. A fertility of a = 0.99a_. represents an efficient nuclear power station.

But a/a, = 1.01 ends my story, not with a whimper, but with a bang.

To sum upall three applications: Critical aspects of the problem of survival of hu-

man family trees were statistically foreshadowed at the moment at which Life began
on earth, and foreshadow how it may end.

The author most warmly thanks Professors D.G. Kendall and P. Whittle for hospi-
tality, and Corpus Christi College for a Visiting Scholarship, in 1972.
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Notational Note

by D. J. Miller

Progress, in the matter of mathematical notation, is a slow business. New topics,

obviously, develop a working notation at an early stage, but there is great conserva-

tism among mathematicians with regard to the notation of traditional topics, despite

the immense saving in time, effort, and obscurity that an innovation may give. Con-
sider how slowly the notation 'iff' for 'if and only if' is advancing; only a small pro-
portion of standard textbooks use it. This particular word should be a help to any

subject in which rational arguments are written, whether scientific or literary, and

cut out much otiose verbiage explaining that an implication can be reversed. Mathe:

maticians have extended the principle to give 'onnce' (once and only once), ‘inn’, and
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others, Let us hasten the day when historians begin 'RRussia, inn the thirties...'
und can miss a sentence about how conditions were different at all other times and

in all other places, or 'Dr SSmith takes the view that....' and miss an unkind note
(hat his view is entirely idiosyncratic. I hope you find this suggestion interesting,
und not just innteresting.

The writing of |x — y|< € as x = y is a convention which could also do with rather
wider use in mathematical textbooks, especially when more complicated expressions

ure near-equated. The Frege assertion sign '|' can usefully be used for 'required to
prove’ in one's own working, and the corresponding denial sign '{' should be used
ut the beginning of a reductio ad absurdum with the contradiction sign # at the end. 
\ preliminary check of a convoluted proof, with contradictions within contradictions,
would be to check that every { paired off witha .

Notation should, if possible, induce truth, in the sense that the ratio of dy to dx is
dy/dx, which is 'obvious’ only in, and because of, this notation. In vector spaces,
therefore, if we use |. and -_ for the much-written words 'independent' and
‘dependent’, then the use of of — for 'spans' (as in {x,,X5.......
(hat we could write {x,,X5,...... }

— V) suggests
(JV for '{X,,Xo,--+e-- his a basis of V'.

Other much used words are eigenvalue, eigenvector, and eigenfunction, which could

clearly be abbreviated 7, 4+ , andPs rather than 'e-value' &c.as they are at present.

‘Open’ and 'closed' in topology call for abbreviation not by their length, but by their
(requency of use. A general principle has been suggested, that one should write an
operator with two short vertical lines through it to indicate the adjective 'invariant

under (operator)', but this seems too clumsyin this particular case, and makes

‘closed’ look rather like 'pi' if one is not too careful.

This note will have served its purpose if it encourages anyone to take an initiative

ruther than treat the present conventions as if they were handed down on tablets of
stone. (Send your ideas to Eureka if you wish to makea bid to change the present
conventions).

Odeto the Negative Gaussian
Curvature of Potato Crisps

by Colin Vout

Of all the unsolved problemsthat

Confront us in this world,

The biggest mystery to me

[s: why are crisps so curled?

Their curvature is negative;

Whichever way they went

At first, you'll find to compensate

They're oppositely bent.

Now, whenit's plunged into the oil

How does a crisp react?

Does it expand, and buckle up,
Or does the thing contract ?

Or does it seek to minimize

Its surface area?

So, like a soap-film, there would be

No max- or minima.

Considering an element:
If forces balance out,

Then V2 crisp is zero and
The same thing comesabout.

But still, some crisps have,locally,

A curving more than nought;

Though by and large its sign will be

A minus, as it ought.
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Imagine, now, the heated vat; Or do the bubbles,rising up,

 

The oil begins to bubble— Distort the crisp that way?

A sliced potato enters and But crisps are sometimes bentin half;

Proceeds to bend up double. Explain that, if you may.

Perhaps uneven heating makes The facts we know about the world
One side shrink rather more; Should help us passthis hurdle;

Then if the crisp should overturn Or is this an example of

It curls up, as before. The theorem proved by Gédel ?

And so the curve is negative; O Archimedes, answerthis,
But now we wonder what Our patron and our hero:

Would happen should it not reverse, Whyis the curvature of crisps

For then the curveis not. So clearly less than zero? 

And anyway the temperature
Is constant, I feel sure;

For otherwise some overcook

While other crisps stay raw.

(Footnotes: (i) In mathematick verse/Whenjust for hell you're dabbler/Thetriangle
inverse/Should be a V not V.

(ii) A physicist has suggested a reason for the phenomenonin question is that the

inner part of .a potato contains more water than the outer; therefore it shrinks more

on cooking; therefore there is in effect a circular frame holding the surface within

it open; therefore the crisp is analogous to an open universe; and it is well known that

a universe is open iff its Gaussian curvature is negative or zero. (How about a

general cosmology of crisps?)—Ed.)

Tomorrow is the day after Doomsday

by J. H. Conway

Lots of people have produced rules for working out the day of the week corresponding

to any given date. One need merely add components for the century, year of cen-
tury, month, and day of month, reduce modulo 7 and then start counting at the right

place. But since the month components are essentially random numbers most
people soon forget the rule. [In the version known as Zeller's congruence the month

numbersare produced by a uniform formula, but this is just complicated enough to

be easily forgotten.|

 

The Doomsdayrule is one I worked out last year in an attempt to overcome these

difficulties. In it one computes Doomsdayfor the given year and then computes dates
in that year relative to Doomsday. The rule has the additional advantage that when

one knows Doomsdayfor the year one hasin effect the complete calendar for that
year at one's fingertips—so all the man in the street need do is rememberto update

Doomsday at about the time he remembersto put the new year on his cheques.
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Doomsdays in a given year

!oomsday for a given year is defined to be the day of the week

on which the last day of February falls. For 1973, Doomsdayis
Wednesday. The displayed table shows how to find a Doomsday 
in any given month. In February we see that a Doomsdayis
cb 28 or 29 according as the year is ordinary or leap. In

January, a Doomsday is Jan 31 or 32 in the same circum-
alances. (Of course Jan 32 = Feb 1, but we should think of it as
Jun 32.)

(therwise a Doomsday in the nth month is the nth day, ifn

in even, and the (n + 4)th day, if n is odd. The sign is + for
long odd months (31 days), and—for short ones (30 days),
and it is fairly easy to rememberthan the only short odd.

inonths are September and November.

‘ummary: 'Last' in Jan and Feb, otherwise nth in even
months, (n + 4)th in odd ones.

DOOMSDAYS

Jan 31/32
Feb 28/29
Mar3+4=7
Apr 4

May5+4=9

June 6

July 7+4=11
Aug 8
Sep 9—4=5
Oct 10
Nov 11—4=7
Dec 12

l\y adding and subtracting 7s we can find other Doomsdaysin these months, and then

ly the 'last-friday-was-the-twentyfirst-so-today-is-the-twentyfifth' technique we

vcun locate any particular date.

i xamples.

August 19 1973? August is the 8th month, so that August 8th, and therefore August

‘énd are Doomsdays (Wednesdays in 1973), so August 19th is a Sunday.

‘eptember 24th ? September is the 9th month, and is short, so September 9 — 4 and
‘eptember 26 are Doomsdays, so September 24th 1973 is a Monday.

if you do things exactly this way you will gradually remember more and more Dooms-
(ys throughout the year. Don't say things like Sep 5 = Doomsday, 24 — 5 = 19 = —2

(mod 7), so Sep 24 = Doomsday — 2. This kind of calculation is prone to sign

errors and does not help you to accumulate more mental Doomsdays.

!}oomsdays for the century years.

(ne first needs to know Doomsdays for the century years. All the practical man
need know is that Doomsday for 1900 was a Wednesday. (We say simply '1900 was a
Wednesday'.) However, we assert that in the Julian system (which was used in

''ngland before September 1752) the years 0, 700, 1400, 2100, . .are Sundays (they
were more Godly then! ), and that each century after one of these retards Doomsday

hy 1 day. In the Gregorian system (after September 1752) 0, 400, 800, 1200, 1600, .
are Tuesdays, and each century after the most recentof these retards Doomsday by
‘days. In particular, 1900 = 3 centuries past 1600 = Tuesday — 6 = Wednesday,as

’ asserted.

!hoomsdays for years in a given century.

uch ordinary year has its Doomsday 1 day later than the previous year, and each
leap year 2 days later. It follows that within any given century a dozen years ad-

vances Doomsday by 12 + 3 = 15 days = 1 day. ('A dozen years is but a day.') So
we add to the Doomsday for the century year the number of dozens of years there-
ifter, the remainder, and the numberof fours in the remainder. It is easiest to say
(hese numbers aloud, as in the examples. Remember, 1900 = Wednesday.

1046? We have 46 = 3 dozen and 10, so we say

‘1946 = Wednesday, 3 dozen, 10, and 2 = Thursday.'
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(Thursday being found by adding 3, 10, and 2 to Wednesday;.)
1973 ? Wednesday, 6 dozen and 1 = Wednesday, as we know.
1990 ? Wednesday, 8 dozen, 5, and 1 = Thursday.

1752 September 2 (Julian) ?

1400 = Sunday, so 1700 = Sunday — 3 = Thursday, so
1752 = Thursday, 4 dozen, 4, and 1 = Saturday, so
September 5 would be Saturday, and September 2 = Wednesday.

1752 September 14 (Gregorian) ?

1600 = Tuesday, so 1700 = Tuesday — 2 = Sunday, so
1752 = Sunday, 4 dozen, 4, and 1 = Tuesday, so
September 5 and 12 would be Tuesdays, so September 14 = Thursday.

 

 

In fact in this country Wednesday September 2 and Thursday September 14 1752 were

consecutive days, since this was the year we changed from Julian to Gregorian.

Note on changesin the calendar.

The Julian system in which every fourth year has an extra day was introduced by
Julius Caesar on the advice of the astronomer Sosigenes. For some time the calen

dar had been at the mercy of Roman officials who more or less arranged things to

suit themselves, and there had, for instance, even been one year with a month of 45

days. Sosigenes recommended a regular alternation of 30 and 31 day months which

would have been adhered to had not both Julius and Augustus Caesar needed the

months named after them to have 31 days, which was achieved by breaking the regu:
lar alternation and shortening February still more.

 

The Gregorian system, in which years divisible by 100 but not 400 are not leap years
was introduced by Pope Gregory XIII. Roman catholic countries changed in 1582,

but protestant countries resisted this piece of popery for several hundred years, and

then changed at various times. Some eastern European countries changed only this

century. Sweden managed the change most elegantly, by simply omitting all leap

years between 1800 and 1840 inclusive. So in working out dates for the intervening
period, one must be sure where one's problem originated.

The reason for the change was of course that the astronomical year has 365. 2422
days rather than 3654, and the inaccuracy had gradually accumulated until it was
10 or 11 days. Thereis still a residual inaccuracy which many people have remarked

would be partly cured by making the years divisible by 4000 not leap years, but with
any luck the whole ungainly system will be dead by then!)

Another annoyanceis that the conventional starting date for the year has not always

been January 1 (as we have supposed in the Doomsday rule). A numberof different

dates have been used at various times, even in this country. Jan 1 and Dec 25 (of
what we should call the previous year) were both used at about the end of the first

millennium, but March 25 then became more or less universal. So for instance
March 24 1583 and March 25 1584 were consecutive days.

This convention for starting the year is the Old Style, the January 1 convention being

the New Style. Unfortunately these terms are often used incorrectly to refer to the
Julian and Gregorian systems, since in fact the Act of Parliament establishing the

Gregorian system in England also finally decreed that the New Style was henceforth

to be used for all legal purposes.

In fact the change from Old to New style dating had been accomplished long before.

From about 1600 to 1700 opinion had gradually hardened in favour of the New Style.

In the changeover period we usually find the double dating convention—thus February
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14 166°% denotes the date which would be Feb 14 1665 (Old Style), and Feb 14 1666
(New Style). The situation is further complicated by the fact that dates in history

looks have often been transposed into New Style even when they refer to periods
when Old Style was the only one in use. Also, dates in English history books for

ihe deaths of French kings (say) might be in either the Julian or Gregorian system
for the period between 1582 and 1752, according as the original source was English
or French.

I'he fact that for various financial purposes the year starts on April 5 is an interest-

ing consequence of the various changes. Originally it started in the first day
(March 25) of the calendar year. When New Style was adopted, this remained the
alart of the financial year, although no longer the start of the calendar year. When
we changed from Julian to Gregorian, this became April 5, since obviously no one
was to pay a full year's interest on a year that was eleven days short!

So apply the method for historical dates with some caution. But the rule really comes

into its own for dates within any given year. Throw your calendar away after a quick

“lance to find the Doomsday, for when you know Doomsday you will know it all! But
when you impress your friends with the Doomsday rule, rememberto give credit

where credit is due! I do this now by noting that I found the Doomsday rule by sim-

plifying (almost beyond recognition!) a rule given by Lewis Carrol in Nature, 1872.

Triangles

by Bernard Silverman & Paul Marx

roblem

There are 100 points, no 3 collinear, on a piece of paper. We consider each combina-
(ion of 3 of the points as the vertices of a triangle. Find an upper bound (< 1) for
ihe proportion of acute- (excluding right-) angled triangles in the set thus formed.

Investigation

Suppose A is such an upper bound for sets of m points. Let S be a set of n (> m)

points. We consider separately each of the ,Cy, subsets of S consisting of m points.
ach gives mC. triangles, of which we know at most A. mC; are acute. So alto-

wether we have p»Cm-.mC; triangles, of which at most p»Cm.A.mC3 are acute. Butof
course we have counted each triangle exactly p_3Cm_3 times. So considering S as a
whole, we have p»Cm-mC3/n_3Cm-_3 = nC3 triangles of which at most
ri! m-A»mC3/n-3Cm-3 = A.nCz, i.e.a proportion A, are acute. So A is also an upper
bound for sets of more than m points, such asS.

Now of course A.,C., need not be an integer, whereas the maximum numberof acute
(riangles must be. So our upper bound for n points can be improved to [A-nC3]/nC3
(where [ |] represents truncation).

We will get out best result by doing as many truncations as possible, which means

considering one extra point at a time. Thus we obtain the recurrence relation:

An = An-1.nC3)/nC3 (*)

We now look for a suitable initial value for the recurrence relation. Let us consider
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(a) (b)

 
 

 

a set of 4 points, which will form either a convex quadrilateral (a) or else a triangle
with 1 point insideit (b),

In (a) we have A+B+C+D= Qa; in (b) we have A + B+ C = 27. In either case
there must be at least one non-acute angle, and so at least one of the four triangles
must be non-acute. So we can take A, = %.

Let us now attack the recurrencerelation. Put off by the [ ] function we consider
its general properties. Clearly we have a non-increasing sequence, and numerical
evidence suggests very strongly that it converges to 74. Encouragedby this we play
with the first few numerical values and obtain: Ay = (2/3)(1 + (n— (n rem 3))/
n(n — 1)(n — 2)) (where n rem 3 represents the remainder on division of n by 3).

By substituting this in (*) we verify that this is in fact its solution. So for the ori-
ginal problem we have: Ao, = 3267/4900. /
Is this the best we can do? Can these upper boundsbe attained? By drawing dia-
grams and doing a small computer search we obtained the following results:

largest numberof acute

 

 

n An-n©&3 triangles observed

4 3 3 (see (a))
5 7 7

6 14 14

7 24 22

8 38 32

So this is still an open question. If one found that in fact oneof the upper bounds
could be reduced, all the succeeding upper bounds could also be reduced using (*).

. Alternatively, we can try to construct a sequence of diagrams containing increasing
numbersof points, for which we have a general expression for the proportion of
acute triangles in termsof the numberof points. This will give us, so to speak,
lower bounds for the upper bounds.

As an example, consider the regular polygons. Here we have a proportion of acute
triangles which is 44, + O(1/n) asn—. This is not muchuse,butat leastit dis-
poses of the alarming possibility that the maximum proportion might — 0 as n->o.,
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Well-Founded Games.

by David Fremlin

|. Most mathematicians are familiar with the game of Nim, but perhaps I should

begin by briefly describing it. Two players face each other over a (finite) number

of (finite) piles of counters. Each in turn must remove counters from a pile; he must
remove at least one counter and he may touch only one pile. The player who takes

(he last counter loses. (A version of this game was prominent in a fashionable avant-
varde film of a few years back, L'Année Derniére 4 Marienbad.)

y
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Nim is one of a large family of games which are determinate in the sensethat,

for any given starting position, it is possible to predict which player will win if both

play correctly. In the case of Nim, this is a consequenceof the fact that there are

only finitely many games possible following a given starting position. For we can

define 'P-positions' and 'N-positions' inductively, thus. The 'empty' position,with

no counters in no piles,is an N-position. Suppose we have classified all positions

with a total of n counters or fewer, where n = 0. Now Saythat a position with n + 1
counters.

(a) is an N-position if there is a move by which it can be transformedinto a P-
position;

(b) otherwise, is a P-position.

It is now easy to see that if you have an N-position, you can force a win, while if you
have a P-position, you will lose against an efficient opponent. For in the latter case

your move will necessarily result in an N-position, and now your opponent can turn

it into another P-position. |

3. The finiteness of the whole game of Nim is not essential here; what is important

is the fact that any particular gameis bound to finish. Let us define a well-founded

ame to be a quadruple (G, R, Ty, Tp), where:

(i) Gis a non-empty set.

(ii) Ris a relation on G such that: if AC Gis non-empty, there is anaec A
such that there is no be€ A for which bRa. Weinterpret 'bRa' as 'there is

a legal move transforming position a into position b', and say that b follows

a. Thus the condition on R is that every non-empty subset A of G has a
member which has no followerin A.

Weseein particular (a) that there is no ae G for which aRa (for set A =
{a}); (b) that there is no sequence (a,,) in G for which ap, , Ra, for every (for
set A = {an:n © N}); (c) that there exist terminal positionsin G,i.e. posi-
tions with no followers (for set A = G). Using the axiom of choice,it can
easily be shown that property (b) is equivalent to the condition on R. Thus,

subject to the axiom of choice, a game is well-founded iff any particular
sequence of moves must terminate.

(iii) Now finally (Ty, Tp) must be a partition of the set of terminal positions in
G. We interpret T, as the set of terminal positions for which the last player

loses; Tp as the set of terminal positions for which the last player wins.

Of course one of these may very well be empty. If Tp, = 9, as in ordinary
Nim, we call the game negative; if T, = 9, the gameis positive.

4. We can now provethe following.
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Theorem Let(G, R, Ty, Tp) be a well-founded game in the sense of §3 above. Thenthere is a unique partition (Gy, Gp) of G such that:

Ty & Gy, Tp S Gp;

if ac Gp, then there is nobe Gp such that bRa;
if ae Gy\Ty, then there is a be Gp such that bRa.

Sketch of proof Say that a pair (U, V) of subsets of G is admissibleif:

Ty SU,TpV;

UN V=Q9;

if a © V, then every follower of a belongs to U;
if a € U\Ty, then there is a followerof a in V.

For instance, (Ty, Tp) is admissible, since the conditions are vacuously satisfied. If(U,,V,) and (Up, V,) are admissible, apply the well-foundedness condition (ii) of §3to

to show that A = 9; it follows that (U, U Up, Vy U Vz.) is admissible. Now set

Gy
Gp

pe there is an admissible (U,V) witha ce U
a: there is an admissible (U, V) with ac VI.

Show that (Gy, Gp) is admissible. Apply the well-foundedness condition again to

A = G\(G, U G,)

to show that A = @ (for otherwise a bottom element of A could be added to one ofGy, Gp), and hencethat Gy and Gy,are the required sets. (This is a simpleexample of transfinite induction),

D. We can interpret the partition (Gy, Gp) by Saying that G, is the set of N-posi-tions and Gp is the set of P-positions, just as in §2 above; every follower of a P-position is an N-position, while every non-terminal N-position is followed by atleast one P-position.

It is clear that knowing Gy and Gp gives youa strategy: if you are faced with anN-position, change it to a P-position; if you are faced with a P-position, knock the

chess, there can in theory be found by enumeration of cases. (Of course, chess is athree-valued game,since draws are possible. Exercise for readers: adapt the theo-rem aboveto this case, Showing that G is partitioned into 3 sets). The case of chess,of course, is very theoretical] indeed.
6. However, for Nim,an effective algorithm for deciding whether a position is inGy or Gy is known;it was published by Bouton (1). It is based on a curious fact. Let(N*, R, T, B)be the game of Nim in the terms of §3; T, = @ becausethe only terminalposition is an N-position. Now consider (N*, R, 9, T), that is, the same game exceptthat you win if you take the last counter. This is positive Nim, as opposedto theordinary game, negative Nim. One would naturally supposethat they were quitedifferent games. Butin fact it is easy to see that positive and negative Nim have
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iearly the same N- and P-positions. Now Bouton's analysis gives a very simple

ind elegant method of computing P-positions in positive Nim. (Hint: by direct cal-
‘ulation, as in §2, find all P-positions with < 7 counters in each of < 3 piles. Ex-
)ress your results in binary notation and look for a pattern. Answer onp.ii).

‘7. The same arguments can be used for 'transfinite Nim'. In this case, the finite

piles of counters are replaced by ordinals, possibly infinite; the numberof piles,

lowever, must remain finite. The trick is to work out what the binary expansion of
i ordinal is. What you do is to identify the binary expansion of a finite integer k
with a finite set A © N; A is the set of places where 1's occur,i.e.

k = di nea an,

if k =0,A = @. Now we can orderthe class of all finite sets of ordinals by writing

A< B&3&8B€e B\A such that fora>fp,ac AGacB.

(his is a well-ordering and consequently the class of finite sets of ordinals is

cunonically isomorphic to the class of all ordinals; thus each ordinal is naturally

ussociated with a finite set of ordinals, and it is this finite set which behaveslike a

binary expansion. The Nim analysis is now easy to apply directly to these finite

Hots.

. A whole class of games can now betackled; this was done by Sprague (2). If G
und H are positive finite games, their disjoint sum G@® is the gamewith position

aol GX H and follower relation given by

(a, ao)R(b;, bs) <> ay = ao & b,Rb, or a,Ra, & bi = Do.

(he terminal positions of G® H arejust the pairs (a,b) where a is terminal in G
und b is terminal in H; they are all P-positions, as this is to be a positive game. It

in easy to see that G@ isstill finite. We observe that positive Nim is just a dis-

joint sum of copies of the trivial game Nim,, positive-Nim-with-one-pile.

Nprague's work applies to any disjoint sum of positive finite games. He uses the no-

lion of the rank of a position. If a is a position in a positive finite game, then r(a) is
defined inductively by

 

r(a) = 0 if a is terminal;

r(a) = least non-negative integer not equal to r(b) for any follower of a, if a is
not terminal.

ll is easy to see that r is well-defined; that a is a P-position iff r(a) = 0 (this is
where we use the fact that the game is positive); and that r(a) is that unique integer
such that the pair (a, r(a)) is a P-position in the disjoint sum G® Nim,.

(he point is that if G and H are positive finite games, then (a, b) is a P-position in

ihe disjoint sum G@ H iff r(a) = r(b). From this we see that (a, b) is a P-position in
(\) H iff (a, r(b)) is a P-position in G® Nim,. Now a simple induction showsthat
if G,,..., Gp are positive finite games, a position (a,,...,a,) inG, ®...®G, isa
|’- position iff (r(a,),..., r(ay,)) is a P-position in positive Nim; and we knowall about
l’-positions in Nim.

l'rom the arguments above it is clear that r(a, b) is a function of r(a) and r(b). I
leave it to the reader to describe this function.

‘9. This analysis works just as well for arbitrary positive well-founded games;

hut the rank function must now be allowed to take infinite ordinal values, and its
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definition requires a true transfinite induction. We then use the analysis of trans-

finite positive Nim (§7 above).

10. Grundy & Smith (3) made a determined assault on the problem of disjoint
sums of negative games, like ordinary Nim. They shought a new kind of rank func-

tion which would be such that (i) 6(a, b) would depend only on 6(a) and 6(b) (ii) the
value of 6(a) would determine whether a was an N- or a P-position. Their arguments

are interesting and subtle but the most natural conclusion to draw from them isthal

the problem is very hard.

11. I will conclude this essay with a description of two particular finite games.

The first is taken from (2). Its positions are the same as those of ordinary positive
Nim,but there is a new kind of move; as an alternative to removing counters, you

may break one of the piles into two, each part, of course, not empty. Calculate the

Sprague rank of a single pile of n counters; the answer may surprise you.

12. The second gameI shall call Nim-squared;I saw it in the Observer in 1961
or 1962. Imagine counters placed, not in piles, but in a rectangular array, as on the

Squares of a chessboard. For a move,you take counters away; as usual, you must

remove at least one; and if you take morethan one, they musteither all belong to the

same columnor all belong to the same row. Thus

XXXX XXXX XXX XXX

XXXX x x x
—-. > ——

XXXX XXXX XXXX XXXX

XXXX XXXX XXX XX

is a legitimate sequence. What are the N- and P-positions (a) for the positive game
(b) for the negative game ? I have no idea how to find them in general, but I cajoled

the PDP-10 computer at the University of Essex into giving mea list of all P-
positions that can be got into a 4 x 4 square. Observethat (i) permuting the columns
(ii) permuting the rows(iii) reflecting about the diagonal, do not change the valueof
a position; so I give only one example of each type. The first list (Table 1) gives the
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Table 1

P-positions for positive Nim-squared
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Table 2

P-positions for negative Nim-squared
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\-positions for the positive game. (As is usual in gamesof this type, the N-positions

yreatly outnumber the P-positions). Unsurprisingly, many of these possess a rota-

ional symmetry of some kind, The second list (Table 2) gives the P-positions for

ihe negative game. Now I find it really surprising that the two lists overlap as much

un they do. Has anyone any ideas ?
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y’ + D os x?

by Bernard M. E. Wren

The most thoroughly investigated single Diophantine equation must be y2+D=x°3;

see, for example, chapter 26 of Mordell[1].

The equation y2 + D = x° however,is much less represented in the literature, bu

does yield a small amount to elementary twiddling.

or example, squares modulo11 are 40,1, 3, 4, 5, 9} and fifth powers modulo 11 are

(), 1, 10} whence the equation is insoluble in integers if D = 4 mod 11.

Theorem

Let D be a positive, squarefree integer, D ~ 3, with D # 7 mod 8. Then if 5 does not

divide the class-number of Q(vV— D), the equation y2 + D = x® has no solution in inte-

vers except when D = 1,19, 341 when the only solutions are

(x, + y) = (1,0), (55, 22434), (377, 2759646).

Proof:

The case D = 1 goes back to 1850, see Mordell [1], p. 301, so henceforth we assume

bel,

x even implies y? = — D mod 8 which is impossible under the given hypotheses. So

x is odd, y2 + D is odd, and thus (y + v—D, 2) =1.

Then (y + VW— D, y — W— D) = fy + J— D, 2V— D)

=

(y + v—-D, 2) since (y,D) = 1

1

Whence (y + v— D) = a® for some integral ideal a. Since 5 does not divide the class-

uumber, a is a principal ideal. Moreover, when D = 3 mod 4, the multiplicative in-

dex of ty

9)—

D} in Z[V—D]is 3 so thatif

a=

a+

yFo) with a, b odd integers,then

 

 

 

  
 



ad = (a-g

P

£5) with A, B odd integers.

Comparing coefficients of W— D gives an impossible congruence modulo 2. Conse-
quently (y + v— D) = (u + vv—D)5 forintegers u, V.

Since D = 1,3 the only roots of unity in Q(¥—D) are + 1 so that we deduce an equation

y+ v—-D=(u+ w—b)5

where the + sign has been absorbed without loss of generality into the fifth power.

Equating coefficients of v— D gives 1 = 5u4v — 10u2v3D + V5pD2.

Accordingly, v divides 1 and v = — 1 is impossible modulo 4. So v = 1 and
Sut — 10u2D + (D2 — 1) = 0 giving

Ap2 +1

So 4D? + 1 = 5t2, say,and D+ t = v2,

Substituting, 4(u2 * t)2 + 1 = 5t2

i.e.t? + 8u2t — (4u4 + 1) =0

whence (4u2)?2 + (4u4 + 1) is a perfect square, say w2.

Then w? — 1-= 20u4 and modulo 8, u is even.

ans {eee jibe for int
w*1=8,2064 °% w*1= 8.494 for integers a,8,

giving respectively a* — 8064 = 1 and 5a4 — 1684 = 1, the signs chosen modulo4.
The latter equation is impossible modulo 8, and the former (N.B. Mordell [1] p. 275)
has only the solutions (+ a,+ 8) = (1, 0), (3, 1).

These values give (u, w) = (0,1), (6,161) respectively; the former now gives D=1
and the latter D = 19 or 341 with corresponding solutions (x = u2 + Dv2 = u2 + D)
x = 55, 377.

Ref:- [1] Mordell: Diophantine Equations.

Another Proof of the Pythagorean
Proposition

by Arjun Tan

It is refreshing to see that many recent text books on geometry are furnishing ancien!
proofs of the Pythagorean theorem which maydate back to thousandsof years before
Pythagoras. An ancient Chinese proof, using the algebraic identity

(a + b)? — 4(4,a.b) = a2 + pb? (1)
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ia given in Smith's History of Mathematics (also in Hogben's Mathematics for the

Million, p.63). This proof is believed to be known to the pre-Christian Egyptians

ilno, Another elegant proof, known to the ancient Hindus and believed to be due to
i\huskara, is listed by Loomis (see also History of Hindu Mathematics by Dutta and

‘ngh). This proof uses the identity

 

(b — a)? + 4(4,ab) = a2 + b? n>)

(he celebrated proof by Leonardo da Vinci (1452-1519) is also listed by Loomis
(Che Pythagorean Proposition, p. 129).

{.comis has compiled over two hundred different and slightly different proofs of the

l'ythagorean proposition and classifies all proofs into four categories: algebraic,
vyeometric, vectorial and dynamic. He also proposesthat no trigonometric proof is

possible.

A recent proof not listed.by Loomis is given by Hyatt and Carico (Modern Plane

(jeometry for College Students, pp. 228-229). Another similar but different proof is

viven in Fig. 1.

 

 

   
b A

Proposition. In triangle ABC, ACBis a right angle. To provethat

a2 + b? = c? (3)

Construction. Triangle ADE is drawn equal in all respects to the triangle ABC. DF

is drawn equal to CD = b— a. Therest of the construction is clear from the figure.

Proof, It is easily seen that triangles EFG and BCH are equal in all respects. Now

Area of trapezoid ABHG = AABC + ACDF + ABCH + area ADFG

or, thc. (AG + BH) = 4a.b + ¥4(b— a)? + AEFG + area ADFG
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or, Ipc. (AG + GE) = ha. b + ¥4(a — b)? + AADE

or, nc2 = Iba.b + 4(b— a)? + La.b

or, a2 + b2 = c?,

The above proof makes use of the algebraic formula for (b — a)?. The corresponding

proof with use of formula for (a + b)? is that of Hyatt and Carico. Both the proofs
use the formula for the area of a trapezoid.

It is possible that this has been done before. The purpose of this article is not to
claim originality but to publiciseit.

A New Geometry

by D. M. Behrend

This article is the outcome of an attempt made some years ago to construct an axiom
system for plane geometry, using the area of a triangle as the basic concept. As one

might expect, this turns out to be moresuitable for affine than for Euclidean geo-
metry.

A geometry here meansa triple (R, P, a) where (i) R is a non-zero integral domain
not of characteristic 2, (ii) P is a set of at least 3 points, (iii) a is a map P? ~ R
satisfying the axioms below. We write ABC for (A, B,C)a, which may be thoughtof
as the signed area of the triangle ABC.

 

Axioms. Here A, B,C, X, Y are arbitrary points of P.

(1) ABC = BCA = ACB (whence ABB = 0).

(2) ABC = XBC + AXC + ABX

(3) If A = Bthen ABT = 0 for some T € P.

The next axiom comesin a weak and a strong form.

(4W) If ABC = 0 then (ABX)(ACY) = (ABY)(ACX)

(4S) (AXY)(BCX) + (BXY)(CAX) + (CXY)(ABX) = 0.

To see that (4S) = (4W), first change the notation of (4S) by swapping A and X, then
use (1). For the time being we shall assume only (4W).

A straight line is defined to be a subset of 1 of P such that

(i) 1 contains at least two points
(ii) If X,Y, Z e¢1 then XYZ =0
(iii) If X,Y © l and X # Y and XYZ = 0 then Z € 1.

Prop.1. If A ~ B then the set 1 = {X|ABX = 0} is the unique straight line containing
both A and B.

Proof. If such a line exists it must be 1. Conversely A, B € 1 and so (i) holds. For
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(\i) suppose ABX = ABY = ABZ = 0; we require XYZ = 0. Take T such that ABT ~

0, By (4W)

(ABT)(AYZ) = (ABZ)(AYT) = 0.

llence AYZ = 0, and similarly AZX = AXY = 0. If X = A wehavefinished. If X ~ A

tuke U such that XAU ~ 0. By (4W)

(XYZ)(XAU) = (XYU)(XAZ) = 0.

ilence XYZ = 0. The proof of (iii) is similar.

if 1, m are straight lines, 1 is parallel to m iff ABX = ABY for all A, Be 1 andall X,

Y © m. Parallelism is clearly a reflexive relation, and is symmetric by Axiom (2).

lor transitivity see below (Prop.8).

Prop.2. If A # B and X # Y and ABX = ABYthen AB|XY. (Proof omitted).

Prop.3, Distinct parallel lines have no point in common, (Proof omitted)

Prop.4. Let 1 be a straight line, A € 1, and B ¢1. Let X, Y € 1 and suppose ABX =

ABY,. Then X= Y.

Proof. Suppose X ~ Y. Then AB||XY (Prop. 2). These lines meet at A and hence co-

incide (Prop. 3). Hence B € XY = 1, a contradiction.

A closed geometry is one in which any two non-parallel lines have a commonpoint,

Not all geometries are closed. E.g. let R be the real line, P the Euclidean plane, and

define a in the obvious way. This gives a closed geometry,but by deleting a suitable

subset of P we can make a non-closed geometry.

 

An R-complete geometryis one in which the following holds: Given a straight line 1

withpoints A € 1,B ¢ 1, and given A © R,there exists X € 1 such that ABX= A. (This

X is then unique by Prop.4).

 

Prop.5. If an R-complete geometry exists then R is

a

field.

Proof. Suppose (R, P, a) is an R-complete geometry andlet r, e€ R with up ~0. We

construct geometrically € € R such that én = A.

Take a straight line 1 and points A €1,B ¢ 1 (clearly this can be done).

Let C,D € 1 be such that ABC = A and ABD = yp.

Since . # 0,D ¢ AB; so there exists E € AB such that ADE = yu. Let & = ACE. Then

by (4W) (ACE)(ADB) = (ACB)(ADE),thatis, —tu2 =—Ayu. Thus y=

A

as required.

Prop.6. In an R-complete geometry, suppose A ~ B and 1 is a straight line not

parallel to AB. For each ) © R there is a unique X € 1 such that ABX = A.

(This follows from Prop. 5. Details omitted).

Prop.

7.

An R- complete geometry is closed

(This follows from Prop. 6 at once).

Prop. 8. In a closed geometry:

(i) If A = B and ABX = ABY= ABZthen XYZ = 0.

(ii) Parallelism is a transitive relation.
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Proof. Suppose A ~ B and ABX = ABY = ABZ = d (say). In proving that XYZ = 0 we
may assumethat X, Y, Z are distinct and that A ~ 0.

If AX||YZ and AY||ZX and AZ||XY then

 

XYZ = AYZ + XAZ + XYA = 3(XYZ).

Since char (R) ~ 2 this gives XYZ = 0. If (say) AZ XY let AZ and XY meetin Z’,
Now AB||XY (Prop. 2) so ABZ’ = \ = ABZ.

Hence Z’ = Z (Prop.4, taking 1 to be AZ), Hence XYZ = XYZ’ = 0. This is (i), and
(ii) follows easily.

If Gj = (R, Pj, aj)(i = 1, 2) are two geometries over R, an embedding of G, into G, is
defined to be a 1-1 map 6: P, > P, such that K°y9Z° — XYZforall X,Y, Ze P,.
Let R be a field and let P) = R X R. For any (x,y,z) € Pg let x = (x,,x,) etc. and
define

1 1 1

(X,y,Z)@ =| X, yy 2
Xo Yo 42

It is straightforwardto verify that (R, P), a,) is an R-complete geometry. Weshall
denote this geometry by G,(R).

Prop.9. Let G = (R, P, a) be a geometry over a field R. The following are equivalent;

(i) Axiom (4S) holds in G.
(ii) Gcan be embedded into a closed geometry
(iii) G can be embedded into an R-complete geometry
(iv) G can be embeddedinto G,(R).

Proof. It is immediate that (iv) = (iii) = (ii). Now assume(ii) and let A, B,C, X, Y
€ P, Put
 

® = (AXY)(BCX)+ (BXY)(CAX) + (CXY)(ABX).

In proving that 6 = 0 we may assumethat G itself is closed and that the five points
are distinct. If BC, CA, AB are all parallel to AX then all three lines coincide
(Props. 8(ii) and 3). Hence

® = (AXY)(BCX + CAX + ABX) = (AXY)(ABC) = 0.

If (say) BC\XY let BC and XY meetin Z. Now

® = (AXY)(ZCX + BZX + BCZ) +...

but since XYZ = 0 we have by (4W) that (AXY)(BZX) + (BXY)(ZAX) = 0, and two
‘Similar equations. Hence

® = (AXY)(BCZ) + (BXY)(CAZ) + (CXY)(ABZ)

— 0+ (ZXY + BZY + BXZ)(CAZ) + (ZXY + CZY + CXZ)(ABZ).

Since BCZ = 0 we have by (4W) that (BZY)(CAZ) + (CZY)(ABZ) = 0 and (BXZ)(CAZ)
+ (CXZ)(ABZ) = 0; also ZXY = 0; hence @ = 0.
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l'inally, we assume Axiom (4S) and prove (iv). Choose L,M,N ¢€ P such that k =
|.MN ~ 0, and define a map P> R X R by X9 = (KLM, x~1(XLN)). Suppose X? = Y?,
hen XLM = YLM and XLN = YLN, whence also XMN = YMNby Axiom (2). For any
i « P

(LMN)(XYT) = (XMN + XNL + XLM)(XYT)

= [(XTN)(XYM) — (KTM)(XYN)] +...

= (XTL)(XYN — XYM) +...

= (XTL)(MYN + XMN) +...

a: 0.

Ity Axiom (3) this implies X = Y,so @ is 1-1. Let X, Y, Z € P.

lty definition of Gp(R)

«(X9Y979) — [(YLM)(ZLN) — (ZLM)(YLN)]+...

= (NLM)(ZLY) +...

= (LMN)(ZLY + XLZ + YLX)

= K(XYZ).

lence @ embeds G into G)(R).

li we regard R X R as a vector space over R in the usual way, it is not hard to see
that the map @ of Prop.9 is uniquely determined up to an affine transformation of
lt x R of determinant 1. Further, if G is an R-complete geometry then @ is onto.
Thus beginning with any geometry G = (R, P, a) satisfying the axioms(1), (2), (3), (4S)
we may first assume w.]l.o.g, that R is a field, since any integral domain is contained
in its field of fractions; and further we may assume that G is R-complete. Then all
the theoremsof plane affine geometry will hold in G.

lt is quite amusing to try to deduce well-known theorems while working entirely in
terms of the original axioms, For example, let A, B,C be points on line 1, not all
coincident, and let X ¢ 1. Axiom (4W) says that the ratio ABX: ACX is independent of
X, and this ratio can be adopted asthe definition of the ratio AB: AC. Now let ABC
he a triangle and let L, M, N be points on BC, CA, AB respectively, none coinciding
with a vertex. By Axioms (4W) and (4S)

(BLA)(CML)(ANC) + (LCA)(MAL)(NBC)

= (BCA)(CML)(ANL) + (LCN)(MAL)(ABC)

= (ABC)[(LCM)(LAN) + (LCN)(LMA)|

= (ABC)(LCA)(LMN).

llence Menelaus' Theorem: LMN = 0 iff (BL: LC)(CM: MA)(AN: NB) = — 1.

l'inally here are two results (without proof) which may be regarded as theoremsin
uffine geometry.

'rop.10, Suppose A ~ A’, B =B’,C ~C’, Then the lines AA’, BB’, CC’ are either
concurrent or parallel, iff

(BCC’)(CAA’)(ABB’) + (CBB’)(ACC’)(BAA’) = 0.

(Corollary: Ceva's Theorem).
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Prop.11. For any 6 points A, B,C,D,E, F define

B(A, B,C, D, E, F) = (ACE)(ADF)(BCF)(BDE) — (ACF)(ADE)(BCE)(BDF).

(i) Bis invariant under even permutations of A,...,F and is multiplied by —1 under
odd permutations.

(ii) The 6 points lie on a conic iff B = 0.

On the Distribution of Decimal Digits
In n!

by S. P. Castell

The generalised factorial operation, defined recursively by

n! = n(n— 1)!,

0!=K, (1)
n= 1,2, 3 coeee \

is an operation on a set of non-negative integers which produces one string

'd

df, 2 i
Sn = Agag-14p-2-++ee- a5 = 2joni

of such integers from another

df, *n=1 i
Sn-1 = Dgbg_1bg-o.-.--- bybo = Xo Cn-1it >

where

aj = Chi R= Ph M .

; ’ K= 2 d:r*,

bi = Cn4i S = Ppj i=0

and, for all k,

ay, by, dG € {0,1,.....,r— 1} (r > 1).

The term ‘generalised factorial' is used to cover cases other than the usual K = 1,
although the case K = 1 only is considered below. The numberr is the radix of the
particular number system in which S,,S,_, are expressed. Thus, for r = 2 we have
a binary representation, for r = 8 an octal and for r = 10, the situation discussed
below, a decimal system.

Fixing attention, then, on K = 1, r = 10 we can readily computethefirst few "1/10'
factorials from (1):

O!=1,1!=1,2!=2,3! =6,4! = 24,5! = 120,6! = 720.
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hee CENTAGE OCCURRENCE OF DICITS IN FACTORIALCN)

IN DIGIT

0 1 2 J 4 5 6 7 8 9

| 0 100 0 0 0 0 0 0 0 0

f 0 0 100 0 0 0 0 0 0 0

' 0 0 0 0 0 0 100 0 0 0

A 0 0 8650 0 6050 0 0 0 0 0

5 33.33 32 0 0 0 0 0 f 0

( a3 5 so 0 0 0 0 33 0 0

/ 50 0 0 0 es 25 0 0 0 0

' 40 0 20 20 20 0 0 0 0 U

) 16 0 16 16 0 0 16 0-33 0

iu 26 0 14 14 0 0 14 0 2& 0

i} 25 12 0 12 0 G0 12 0 12 25

1s? 44 jl 0 0 11 0 11 11 0 11

Vit A0 0 6°30 0 0 0 10 16 £10 0

14 16 18 18 0 0 0 0 18 18 9

is 30 7 0 415 7 0 15 215 7 0

\¢ 26 0 21 0 0 a 0 7 #28 14

17 26 0 6 6 6 13 13 6 13 6

it 31 0 12 12 6 6 6 18 6 0

1y 33 16 11 5S 1 5 5 0 11 0

() 36 S 15 5 10 0 610 5 5 5

0 eg 10 4 9 10 3 #13 7 7 3

oo 18 9 12 6 6 8 12 4 & i2

P00 20 6 14 10 9 6 7 9 6 8

0) 19 6 10 & 8 9 10 8 8 7

Av0 20 & 9 9 & 9 8 7 8 3

S00 19 7 9 9 9 9 & 9 9 7

400 19 8 9 7 9 & 10 8 9 8

00 19 9 9 8 & & & 9 8 9

HOO 20 8 g 8 9 & 8 10 9 7

Progressing further, at 20!, or soon after, we realise that it would be convenient to

have a computer do this tedious work for us. The ICL 4120 computer has a 24-bit

word and can thus accommodate a maximum signed integer per word of 223 — 1, that

in , just over 8 x 106. Unfortunately, 20! is a decimal number 19 digits long (20! = 2,

432, 902, 008, 176, 640, 000); in fact, the ICL 4120 cannot accommodate factorials greater

than 10! by the normal method of storing one whole number per word (10! = 3, 628,

400). Accordingly, a program was written, in ALGOL 60, to store one digit of (n— 1)!

in each computer word, and to be able to multiply the number stored in this way by n,

(n + 1), ete.. The largest factorial which can be accommodated now depends on the

number of computer wordsavailable for storage of the Py_, digits in Sp_,, and not

on thenumber of bits per word.

 

it then seemed natural to augment the program to count the numberof times, Dnj, j=

0,1,....,9,each memberof the set {0,1,..... , 9} appears in the strings Sy,n = 0,

|,...., N, and to compute, moreover, the percentage occurrenceof each such

member, 100(Ppj/P,,). This idea was prompted by the established discussion con-

cerning the distribution of digits in n decimal places of 7 (see Neville [1] and Broad-

bent [2]). It seemed that the distribution of digits in the string S, formed by n! could

be viewed similarly.

The largest value of N which it has been able to attempt with the computer configura-

tion available (24K), and existing ALGOL program has been N = 800. 800! is a num-

ber of 1977 decimal digits (cf. Comrie [3]) which are distributed as shown.

it can be seen from these Figures that the tendency seemsto be that all digits but

vero are distributed equally, each occurring a little over 9% of the time, while zero
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occurs about twice as often as all others, a little under 20% of the time. Nowit is:
obvious that, for any K,r,as n ~ ©, the string S, corresponding to n! terminates
with a large block of zeros, since, when 1 is a round r, r?, etc., one or more zeros
are tacked onto the end of the string S, in addition to the replacing of digits and
lengthening of S}_, produced by computing 1(1 — 1)! to give 1!.

The following 'K/r-theorems' seem intuitively possible:

Theorem 1

For all K,r,as n— © (and, practically, for n larger than some N),n! contains twice
as many zeros as any other digit, the other digits appearing with equal frequency for

r> 3.

Thatis, if y is the percentage of zeros jn S,, x the percentage of any other digit, y and
x satisfy

y = 2x, (r— 1)x + y = 100.

In the '1/10' case investigated above, r = 10 so that x = 9.0909..., y = 18.1818.....

    
Variation of percentage occurrence of zeros in n! with n.
 

Variation of percentage occurrence of ones in n! with n

(Graphs for other digits are similar to this)
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Theorem 2

I'he number N for which Theorem is practically valid varies directly with r.

l'o see why this is possible, just consider the number system with radix r = 800! (!).
That is, perturbations due to the ‘initial conditions' are extended moreto the right as
r increases, Corollary This effect also depends on K.

(‘an these 'theorems' be (dis)proved? More 'experimental' evidence can be obtained
by carrying out the above computing for N > 800, for K = 2,3,..... and for r = 2,
4

lteturning to '1/10' factorials, it can be seen that digit 5's percentage occurrence
shows a downward jump around 80! In fact, digit 5 occurs once only in 82!. In addi-
(ion, Table 1 showsthat digit 5 comes off the worst in the first 20 factorials. The full
‘text' of 800! will be sent to anybody who caresto write.
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Orthogonull Matrices

by Tim Poston

leafing through a Scottish Maths Project Book brought the following horrorto light:
with no motivation, orthogonal matrices defined by AtA = I, followed by one example
of a particular matrix shown to be orthogonal, plus a couple of exercises doing the

same, Then nothing. No attempt to explain (either geometrically or algebraically)
what orthogonality meant, and no further development. Nothing.

Now any reader with a non-rotary mind (figure that one out) would naturally ask,
what's so special about Ata = 1? What about AtA = 21? Or granted that 2I is less
special than I, what about 0? Let's call a matrix such that AtA = 0 an orthogonull
matrix, and play with them a bit.

Nadly, ALA = 0 implies A = 0 (how quickly can you provethat ?), so it looks like the
‘lass of orthogonull matrices is rather small. But let's generalise, by way of what

A! really means. If we have a linear map A: V > W with a matrix A,its dual (between
ihe spaces of linear functionals from V and W to the scalar field R) defined by A*f(x)

{(Ax), "goes the other way'; A*:W* — V*. If A goes from toitself, however, it is
possible not to notice this. Now if V has an inner product (think of this as giving

*, y (length of x)(length of y) cos a so it defines lengths and angles) this gives an
isomorphism 6: V— V defined by 6x(y) = x.y; a vector x goesto the linear functional
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'taking inner product with x' on V. And if we are using nice coordinates (that is re-

ferred to a basis in which all the vectors are of length one, and any two at right

angles) the linear map At — 9-1A6is called the adjoint of A and has the nice easy

matrix At. just the result of switching rows and columnsin A, (Notation here varies,

by the way.)

So we have

(i) Ata —I = Ata =I (change from & (ii) AtA = I <> 6-1A*0A = 0

matrices to maps), <> A*0A = 0 (@ an iso-

<> 6-1A*9A =I morphism)

<> A*6A(x) = 6x for all x <=> 6A(x)(Ay) = 0, for all

in V x,y

<> (A*6A(x))y = 6x(y) for <=> Ax. Ay = 0,for all x,

all x,y in V y

<> 0A(x)(Ay) = @x(y) for all
x, y in V (definition of
A*)

<> Ax.Ay = x.y

So the orthogonal maps are those that preserve the inner product, and the orthogonull

maps those that kill it-which here only 0 does. But 6 can be defined for any bilinear

form w (bilinearity means exactly that 9 and 9x must be linear), and writing w(x, y)

x@y, and if @ is non-degenerate (i.e. for any x in V,x ~ 0, there is a y such that x@y

# 0) 6 is injective and therefore an isomorphism,since dim(V*) = dim(V). So any

nondegenerate bilinear form gives us a definition of ‘adjoint’, by At = 9-1A*6,and a

new 'transpose' At for matrices if we choose bases and give a matrix for 4; and (i)

and (ii) go through.

Now,there are two important kinds of non-degenerate bilinear form besides inner

products; indefinite metrics, where x@y = y@x but x@x may be zero for non-zero x .

(notably on R4, (x, y,z, t)@(x’, y’, 2’, t’) = xx’ + yy’ + zz’ — tt’, the Lorentz metric of

Relativity), and symplectic structures, where x@y = — y@x, which are central in

classical mechanics. The corresponding orthogonal maps are the Lorentz (change of

inertial frame) transformations and the symplecticmaps, respectively. Both are

much studied, The orthogonull maps are those A's on whose ranges AV = {Ax|x € V]

the restriction of @ gives x@y= 0; for instance, in R* with the Lorentz metric, they

have to map the whole spaceto 0 or onto a light ray. Ina symplectic space dim(AV)

can be up to ¥,(dim(V)). An orthogonull map cannot be invertible, since V is nota

possible range for it—we required @ non-degenerate on V to start with—and so do not

form a group. They form a semi-group without identity, and there is not the slightest

reason to suppose they lead anywhere.Still, it's a nice word and—as far as the

victims of SMP get to know about it—neither do orthogonal matrices.
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Answers to the Problems Drive

10).

 

(a) & ‘Table of scores, Event Table of scores, Event
8 winners abcd no winners abcd

(hb) 8 A 7421 A 0765
B 1247 B 1076
C 4712 C 2107

competitors D 2174 competitors D 3210
E 6530 E 4321
F 0356 F 5432
G 5603 G 6543
H 3065 H 7654

(4) 27R sin 6. (Antarctic/Arctic Circle)

(b) Any meridian, i.e.Great Circle through the poles (circle of longitude)

' days out of 18

(au) 215 (b) 7712 (0123456 = PDMATSH)

(1) 48 oz = 3 lbs (b) 210z=11b5 oz

No danger; B is A's brother (A is B's sister)

n 13: {1, 4,10, 13}, {2, 3, 11, 12}, (5,6, 8, 9, } 7 can go in any antigroup.

(a) 30 m.p.h, (b) 8 seconds
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(a) 18 (10 along bottom, 8 along top)

(b) 8 is believed to be the minimum: we would be very interested to hear of

any improvement on this figure.
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