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Editorial
WEare happyto present another Eureka brim full of “the mixture
as before” or, as our first Editorial gently put it, “some of our

less orthodox or less mature researches.”’ In fact, so full there is

scarcely room for the Editorial.
We would like to thank the many contributors to this issue,

and to invite you all to send us information and items serious
or fanciful for future issues. In particular, we would be very glad

to re-establish links with mathematicians in other universities and
to publish some contributions from them.

It so happens that the present editorial staff cannot read German
and have always been puzzled by the remarkable variety of
German Bs and Gs which appear in some mathematics apparently
just to confuse the reader. Hence it was with delight that we
happenedto discover a complete German alphabet whilst preparing
this issue, and with somesurprise that we find it contains actually
only one Band one G. Perhaps others have been puzzled likewise ?

ABCDETGHFFKLMNOVRARSIUVBBLYB

The Archimedeans

OuR programme this year is full and varied, with a number of
distinguished speakers at our evening meetings. As our speakers
are anxious to be understood by all, members with limited mathe-
matical background should not feel deterred. We are departing
from our usual practice this year by holding our first meeting at
the very beginning of term, and by inviting a very eminent member
of our own University, Sir George Thomson.

This year there will be an emphasis on opportunities for mathe-
maticians in business. We shall be having a talk by the Secretary
of the Institute of Actuaries, and later a visit to the Stock Exchange.
Weshall also be visiting the National Physical Laboratory, and

the Shell Head Office in London.
Tea meetings have proved popular in the past. Weare holding

several this year at which research students will discuss some of
the lighter aspects of modern mathematics. There will be a Sym-

posium of undergraduate speeches, and a meeting at which members

will describe their vacation employment.
Our social activities have already included a Punt Party and a

Ramble, and we shall arrange visits to the Gilbert and Sullivan
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Opera in December, and to My Fair Lady in February. There
will be a debate in the Lent Term, and we hopeto hold a Christmas

Party.

The Bridge Group will cater for both beginners and experts, the
Music Group will meet weekly, and weshall revive the Play-Reading
Group. It is hoped that members will support these activities.
The Committee hopes that the programme will be of interest

to you all, but if you have any suggestions or criticisms do not
hesitate to voice them, either to the Secretary or through the book
in the Arts School. G. J. S. Ross.

Mathematical Association
President; Miss L. D. Apams, B.Sc.

The Mathematical Association, which was founded in 1871 as the
Association for the Improvement of Geometrical Teaching, aims not
only at the promotion of its original object, but at bringing within
its purview all branches of elementary mathematics.
The subscription to the Association is 21s. per annum: to encourage

students, and those who have recently completed their training, the

rules of the Association provide for junior membership for two years
at an annual subscription of tos. 6d. Full particulars can be had
from The Mathematical Association, Gordon House, Gordon Square,
London, W.C.1,

The Mathematical Gazette is the journal of the Association. It is
published four times a year and deals with mathematical topics of
general interest. |
At present the Association has twelve Junior Branches (of which

The Archimedeans was the first), The members of a Junior Branch
may attend all meetings of the Association as associate members.

Postal Subscriptions and Back Numbers

For the benefit of persons not resident in Cambridge we have a postal
subscription service. You may enrol as a permanent subscriber and
either pay for each issue on receipt or, by advancing ros. or more,
receive future issues as published at 25°discount, with notification
when credit has expired.

Copies of Eureka Nos. 11, 13, 15, 16, 17 (1s. each), 18 (1s. 6d.),
19, 20, 21 (2s. each), are still available (postage 2d. extra on each copy).
Complete set of nine, 1os., post free. We would be glad to buy back
any old copies of Nos. 1 to 10 which are no longer required.

Cheques, postal orders, etc., should be made payable to “‘The Business

Manager, Eureka,” and addressed to the Arts School, Bene’t Street,
Cambridge.
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Constructing Open Knight’s Tours

Blindfold!
By R. C. READ

THE problem of constructing open knight’s tours on a chessboard,
beginning at a given cell and ending on a given cell of the opposite
colour has been studied for a long time, and many methods of
solution have been given. Someof these, such as that due to Euler
({1], p. 176) require adjustments to be made to an initial trial
tour until all cells previously omitted have been included; such
methods therefore are not suitable if one wishes to construct a
tour correctly the first time, or to construct a tour blindfold.
Unsuitable, too, are methods, like that of Warnsdorff ([1], p. 180;

[2], p. 259), which require careful check to be kept at each stage
of the cells already traversed.
A method which would appear to have neither of these dis-

advantages is that due to Roget. A description of this method
is given by Rouse-Ball ([1], p. 181), but unfortunately this descrip-
tion contains a fallacy, as will be seen later. In studying this
I arrived at the following variation of Roget’s method, which enables
a knight’s tour to be constructed blindfold with comparative ease.

Roget’s method,as described by Rouse Ball,is briefly as follows.
The boardis divided into four quarters and the cells of each quarter
are labelled with the letters /, ¢, a, and as in Fig. x. Thecells
labelled with a particular letter can then be combined intoa circuit.
If the initial and final cells are labelled with a consonant and vowel
(or vice versa), say / and a respectively, then all the /-cells are used
first, then all the e-cells, all the -cells and finally all the a-cells,
ending on the required a-cell.

For the case when the initial and final cells are labelled both
with consonants, or both with vowels, the description of the method
reads as follows: ‘‘. . . first select a cell, Y, in the same circuit as

the final cell, Z, and one movefrom it, next select a cell, X, belonging
to one of the opposite circuits and one move from Y. This is
always possible. Then leaving out the cells Z and Y, it always
will be possible, by the rule already given, to travel from the
initial cell to the cell X in 62 moves, and thence to move to the

final cell on the 64th move.’’*
This last statement is incorrect as can be seen from Fig. 2.

* Editor’s note: The original description of this method by Roget
in Philosophical Magazine, April, 1840, was not so explicit, and thus
not erroneous.
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If the final cell is Z, the corner cell L cannot be chosen as Y

since there would then be nocell of an opposite circuit available as X.

On the other hand, we cannot go from theinitial cell to X, leaving

out Y and Z, since there is then no way of including L.

In the method described below, the general plan of Roget's

method, viz. that of dealing with all cells having a given letter
at one time,as far as possible, is kept. The touris effected in stages,
at most 16 cells being concerned at each stage.

DEFINITIONS

The cells will be said to be of two types according as they are

labelled with a consonant or a vowel.

Adjacent quarters, such as B and A, or A and D in Fig. 3 are
said to be unlike. A quarter like a given quarter is either the non-

adjacent quarter, or the given quarter itself.
A path is a sequence of 15 moves taking in all 16 cells with a

given letter. We shall define two special kinds of path.
An ordinary path is one which passes through all four quarters

in turn, clockwise or anti-clockwise, and which takes in all the
cells in a quarter before leaving that quarter.
An ordinary path can be madeto end in either of the quarters

unlike that in which the path began. This can be verified for the
shadedcells in Fig. 1, and follows for all other cells by symmetry.
A typical example is illustrated in Figs. 3 and 4.
A cell of the centre block of 16 cells (Fig. 5) will be called central.

A central cell has the property that from it we can move to a cell
of the other type in either a like or an unlike quarter. Thus from
the a-cell shown in Fig. 5 we can moveto either a f-cell or an /-cell

in ether a like or an unlike quarter.
A spiral path is one which takes in first noncentral cells, and

then, when these are used up, central cells. If the first cell of the
path is central, the first move is made to a non-centralcell. Pro-
vided the first move is to a cell in the same quarter there is no
difficulty in constructing spiral paths, and it is readily verified
that there is a spiral path starting from any cell. A typical example
is given in Fig. 5. Note that the last two cells of a spiral path

are central cells.
Wenow give the method for the construction of knight's tours,

and distinguish three cases.

Case I. Initial cell of different type to final cell

The tour will then consist of alternate vowel- and consonant-
paths. Suppose the initial cell is a p-cell, and the final cell an
a-cell. Construct a spiral p-path; moveto an e-cell and construct
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a spiral e-path. Move to an /-cell and construct a spiral /-path.
Now moveto an a-cell in a quarter unlike the quarter containing
the final a-cell (this is possible). There is then an ordinary a-path
which ends in the quarter containing the final cell. Moreover,

| since we enter this quarter by a cell of the opposite colour to the
final cell, we can always make our path end on the desired cell.

 

CASE II. Initial cell of same type but different letter to final cell

Suppose the initial cell is an /-cell, and the final one a #-cell.
Construct a spiral /-path as far as its penultimate cell. Mentally
continue the path to the last cell and on to a cell of the opposite
type, say an e-cell. Make a note of this e-cell (Fig. 6). We now
continue the tour from the penultimate /-cell (which is central)
to an e-cell in a quarter unlike that of the noted e-cell. There is
then an ordinary ¢-path ending at the noted cell, as in the last
part of Case I, Krom this square we move to the last /-cell and
so to an a-square (lig. 6). The tour then proceeds as in Case I,

via a spiral a-path, and an ordinary f-path started and ended in
the appropriate quarters.

  
CASE III, J/mitial cell (1) of sameletter (say 1) as final cell (F)

Mentally construct a path beginning at I and ending at F. This
is always possible and quite easy to do. Let P be any central
cell of this path, and © the next cell after P. Make a note of a
cell of the opposite type which is a knight’s move from Q. It is
not necessary to remember how this cell was obtained. Let us
suppose that the noted cell is an a-cell as in Figs. 7 and 8. 
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| Fig. 7. Fig. 8.

Construct the tour as follows: Construct the portion of an /-path
between I and P, and, from P, move to an e-cell. Construct a
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spiral e-path, move to a f-cell and construct a spiral /-path. Now
move to an a-cell in a quarter unlike that of the noted cell. There
is then an ordinary a-path endingat the noted a-cell, and from there
the tour is completed via the remaining /-cells.

NOTE
In constructing an ordinary path a certain amount of circum-

spection is necessary, but it is not necessary to look more than four
moves ahead—sufficient to see that the first move after entering
a quarter is one which will enable that quarter to be left, or the

final cell of the path reached, as the case may be.
The path from I to F in Case III may sometimes not be im-

mediately obvious; but it will be seen that it is not necessary for
P and Q to be a knight’s move apart, and this fact can be used to
simplify the construction. For example, we can construct portions
of paths from I to P and from F to Q, together taking in all the
cells having the given letter. Provided only that P is a central
cell, and Q is not a cornercell, the construction proceedsas before.

1. W. W. Rouse Ball. Mathematical Recreations and Essays
(Revised by H. S. M. Coxeter). American Edition, 1947. Macmillan.

2. M. Kraitchik. Mathematical Recreations. Fourth Impression,
1949. George Allen and Unwin.

The Computer Revolution

By MARTIN FIELDHOUSE

Apout ten years ago Eureka (Nos. 10, 11 and 13) was reporting
on the building of, and early experience with the remarkable
high-speed electronic computer EDSAC in the Mathematical
Laboratory. A great change has taken place in these ten years.
A new computer, EDSAC II, nearly 60 times faster replaced
EDSAC two years ago. Whereas there were then only two other
computers in the world, there are now about roo other computers
in this country alone, and well over 1,000 in America. Ten years

ago one authority thought there might never be a need for more
than four or five large computers in this country! Soon in every
scheme for automation a computer will be essential.

This summer an International Conference on Information Pro-
cessing was held in Paris. About 1800 people from 37 countries
attended, which alone demonstrates the increasing interest in
computers. It might have been expected that such a conference

would have looked back with satisfaction on a decade of great
achievements and forward to a period of less rapid advance. But
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not at all. There can be little doubt that we are witnessing ‘“‘the
computer revolution,” for the whole tenor of the conference was

that even more remarkable developments lie ahead. I will try
to indicate a few.

If we discuss computers by generations where each generation
is approximately roo times faster than its predecessor, then the
presentis the era of second generation machines of which EDSACIT
is an example. These machines can perform on average about
10,000 elementary operations (‘‘add,” “‘multiply,” etc.) per second.
Third generation computers are being built. The first in this
country will be the computer MUSE at Manchester University,
which may be ready in about two years time. Its average speed
will be at least 700,000 calculations per second.

In the more distant future lie the possibilities for even faster
computers until at about 100 times faster than MUSEthe speed of
light becomes a severely limiting factor. Three types of very
fast computing clements are being developed: cryotrons which
make use of superconductivity, very thin magnetic films, and
parametrons. These latter are circuits with resonating frequency
(say) f, which can be made to resonate exactly in or out of phase
with each other by using a pumping frequency 2f. It 1s anyone’s
guess which of these devices or what other device will prove most
successful.
A major advance will occur when computers can be made to

read printed and even hand-written information directly instead
of only punched cards or other media on to which all information
must first be laboriously transferred. It is likely that reliable
reading machines will soon be developed. There are already a
few which work quite well as long as special type is used. But
better mathematical theories of pattern recognition are needed.
To enable very fast computers to operate continuously and

efficiently the designing principle of ‘time-sharing’ has been intro-
duced. This allows the central arithmetic unit of the computer
to be interrupted in the middle of its calculations in order to carry
out some more pressing work before returning to its calculations
and carrying on from whereit left off. Using this method a fast
computer will be able to keep busy many subsidiary units such as
printers and magnetic-tape decks. In some circumstances a com-
puter will be able to work on several problems at once, or (as in
one American system) several computers will work on one problem

at the same time!
Much time and study is being devoted to the development of

a common symbolic language for computers. Such a language
will enable a programme written for any computer using it to be
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mechanically translated and run on any other computer using it.
At present each computer has its own code and communication
between programmersof difterent computers is very difficult, In
its printed form this new language will look similar to mathematics,
But whereas methametics consists mainly of statements describing
relations between quantities, this new language is “algorithmic’’
and consists mainly of instructions to perform operations on

quantities.
Perhaps the most exciting study is that of trying to teach com-

puters to learn and think. The great difficulty is to know what
we mean by “learn” and “think.” If a human thought process
can be explicitly described then the computer can be madeto
copy it, so that in certain simple senses computers can already
“learn” and ‘‘think.” It is recognized that the human brain has
quick access to far more information and experience than any
computer so far built, but apart from this it is rather surprising
that no one has yet been able to say whether and how human
thought processesdiffer essentially from computer thoughtprocesses.
What are the problems that require even bigger and faster

computers? Here is just one example. In order to predict the
heights of the tides at any place,it is necessary at present to analyse
tidal reading taken at that place or some place close by over a
period of about 30 years; in future it may be possible to calculate
the tides directly for any place in the world given instead data regard-

ing the shape and depth of the oceans.

A Question of Limits: I
By H. T. Crort

WEgeneralize our previous results (Eureka, 20, p. 11), which were:
If f(x) is a real, continuous, positive function,

then lim f(na) = 0, for all a, as + oo through integral values,
n—>OO

implies lim f(x) = 0, as x — oo continuously:
x—>0O

but lim f(x + a) = 0,for all a
n—+0O

does not necessarily imply lim f(x) =o.
x—>00

Now,letfbe as above; andlet g(n), 4,(), h,() . . . be polynomials.
Let G = degree (g(m)) and H = max(degree /,(m)) for allz. Then
we have: lim f(a.g()) =o for all a, implies lim f(x) = 0.

n—>CO X—-CO

And limf(g(m) + byhy(n) +... + d,Ayn) = 0
n—>OO
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necessarily implies lim f(x) = 0, only if G <H.
x—OO

Forconsider the caselim /(a.g()) = 0. If f(x) does not tend to o,
NhCO

there exists an infinite set of intervals (7;,s;) with 7,;,s; > 00, where
f(x) >, for some «. We nowexhibit an a for which a.g(n) falls
infinitely often in an (r,,s,;) and the contradiction will be established.
Take a, in some arbitrary interval («,8). Consider the systems

of intervals (Zp, 2n’) which a,g(n) fills as a, runs from « to B. As

{g (n + 1)/g(n)}-—» 1, these intervals will cover the positive real
axis from some point onward. Therefore, for some sufficiently

large n, and suitable a,, a,g() is an interior point of an (7;,s,),
and so, by continuity, is a,'g(”) for the same » and a,’ sufficiently
near to a, i.e, in an interval («,,8,) say, interior to («,f).
Werepeat the argument, taking («,,8,) for our new («,$), and

soon. For any a, in (%,,8,), @g1g(”) falls in at least q intervals
(7;,5;). The descending system of intervals («,,8,) has at least
one common point, lor such a point a, a.g(m) falls infinitely often
in the (7;,s8,;). Thus

lim /(a.e(n)) —o implies lim f(x) = o. O.E.D.
thee) x—>CO

The same argument applies in the other case if the degree of say

h, =H, > G, for lim Gl)Mea) —1. If
seenipithy g(n) + b(n) +...

G = H,, we may replace p(n) + b,h,(n) +... by 2’(n) + by'hy'(n) +
. where G’ < HH,’ (with an obvious notation) and the argument

proceeds as before,
However, 1f Gee pp & Hy,TH,..., the opposite conclusion will

be true. lor we mayreplace g(m) 4 b,A,(n) +... by g(m) + 6,'n?4
+ bo'n?* 4... And by making a changeof variable, 1’ = ” + k,

for some positive or negative integer k, we may write this as
g(n’) + b(n')P 2... with Oo <b," < ~» We may now drop
the primes.

Now,take/(«) equal to zero outside the intervals (g(m),g(m) + én),
(m = 1,2...) wheree,, —» 0, and equal to a triangular peak function
of height 1 in each such interval. Then /(*) does not tend to o,
but I say f(g(m) + bn?! 4-...) 0 for all 0,,0,...

If not, for infinitely many n, g(n) 4+ bn?! +... les between
g(m) and g(m) + €». Because of the condition we saw we could
impose upon 0,, viz. 0 <b, < p, the above wiil only happen (for

 

sufficiently large m and n) ifn = m;andsoo <bynP++ ...< &.
Hence successively b, = 0, by =o... And as f(g(m)) =0, by
construction, for all m, we see lim /(g(m) + byn?-1+ ...) =o.

nS QO.E.D.

12

  



As to the three possible directions of extension of these theorems,
i.e. extending g() to functions other than polynomials, weakening
“for all a’’ condition in the hypothesis, and weakening the cone
tinuity condition, it is trivial from the proof that “g(n) —» o and
{o(n + 1)/e(n)}—>1” and again that “for all @ in any (small)
interval” are sufficient hypotheses; whilst the continuity condition
cannot be entirely dropped, as we showed in our previousarticle,

 

  

 

  

        

Numerical Square Pe
By Rev. A. H. BaArrass g poy!

Small letters across, capitals down.
Each number is of the form a aE —

KR + MM

where x; is a positive integer and P |
y, 1S a positive prime number.

xD >= /X53 YF >= 4/Xm —= VX; JB = V%9s Xn = *F = Yn

Ve = X%_ = Xn — YB x17 = VEVm — YF

xy = Xp — V4 YAVm = Vora — YF — YF
YF = Vp — YB XgV4 = Xp + Xp

20Vr = 5X%p + X4 Vp = %q — TYF
Xq — I = 2YRYVy 3X%p = X4

XnYVB = Xp += I VaVK >= ee — 2X4

Xa t+I=X, XB = V_¥m + Vo

Yr = Yu? + YR%y? YEVp = Xa — 498"

Values of quantities not found in the clues are equal to numbers
which can be found therein.

Two Matrix Problems
By Max RuMNEY

1. Devise a method of arranging the natural integers 1 to
(= 2km?, m odd) into 2k square matrices of order m with no integer

repeated, no matrix singular, and the integers in each matrix in

ascending order of magnitude, so that the sum of the 2k deter-

minants is divisible by m + I.
2. For” >2, arrange n? — 2n integers of the form 2* (k = 1,

..” — 1) and any 2n odd integers into an m * matrix in which
no row or column has a factor and whose determinant has value

Qn-l,
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Whewell’s Ale Caucus Race

(1) The race will be run in Great Court at 2 p.m. on Monday,
3rd August, 1959, being a Bank Holiday.

(2) The course will be once round each of the 18 rectangular
circuits which it is possible to describe in Great Court.

 

 

     
Great Court

(3) Competitors are not allowed to run round two or more of
the circuits simultaneously and each circuit must be run as a whole.

(4) Each circuit is to be described in the same sense, under-
graduates to run clockwise and B.A.s or research students anti-
clockwise. To avoid confusion undergraduates may not execute
left turns nor B.A.s or research students right turns.

(5) It is not permissible to double back over one’s track on any
segment of the course.

(6) Competitors must wear their gowns unless they are natives
of Sweden.

(7) The umpire will be at the Fountain from 1.45 onwards.
Competitors will draw by lot before 2 p.m. the staircase door
from which they are to start. They must engage in academic
conversation with each other there until the last stroke of two.

(8) The finishing point will be by the Fountain.

(9) The prize will be a firkin of Whewell’s Ale which all com-
petitors will share and which will be dispensed by the winner.

(x10) There will be an Umpire

NOTES

(a) Sample routes may be obtained from any mathematician
in the College for a consideration.

(6) Swedish nationality may be obtained from either Oz or Q2
Great Court also for a consideration.
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COMMENT: Oneof the Junior Fellows of the College was nominated
Umpire. The Race was won by an undergraduate, Adrian Rushton,
in the very fast time of 13 minutes, 43 seconds. Andrew Paterson,
B.A., last year’s Business Manager of Eureka, required 13 minutes,
45 seconds, thus proving that it is almost as fast to run anti-clock-
wise as it is to run clockwise.

Readers will have immediately recognized that it is significant
that the numberof circuits is the product of two triangular numbers,

Problems Drive, 1959

By M. R. BootHroyp and J. H. Conway

I. Inthe year 1960, question 3.14159265 ... of the Archimedeans’
Problems Drive was: “Find the next term in each of the
following series:

(1) 5, 7, 9, 13, 17, 19, 21, 25,...

(ii) O, I, I, 3, II, 43, 225, 1393,...

(iii) I, 3, 7, 13, 19, 31, 43,...”

Unfortunately, the printer had altered one number in
each of the three series. Find his mistakes.

2. Certain inner walls of a5 xX 5 X 5 array of cells are removed.
The diagram shows the five horizontal layers. There is
no wall between cells in adjacent layers bearing the same
number. Find a route from A to B which passes through
as few cells as possible.

 

  

    

                           

14|15 lo} fi4 1S 21 16] 432 33 34] 21] 16] ]32/33]34] 21 44] ]32 43 34] 44
il 1203 tt] fot 29130 20|311}28}29130]42 31] }28]29 42

— no ——e
879 |!0 Bl oliojist{2e 819 27119|126} 927 41 45127] 41

f4|s [6 7 4/slisleé 24 5/18 6 25]|24137/38/39 40] 124] 37] 38| 39] 40
Ad! 2 lajfif2 fiz 3aqhn 2217] 23] ]35 36 231135] 36   

3. Express the integers from one to twelve using only three 1s and
the usual arithmetic symbols. The symbol for integer
part and trigonometric functions are not allowed,
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4. Bloggs & Co. grind corn at their A, B and C mills
at the rate of 20, 15 and 35 sacks per hour.
The flour is to be taken to four bakeries
P, QO, R and S, whorequire 20, 20, 10 and 20

sacks per hour. The table gives the cost in
pence per sack of taking the corn from each
mill to each bakery. Determine how many sacks per hour
each mill should supply to each bakery if the costs are to
be as low as possible.

Mm
W
o
r
d

R
O
O
W

Pp

C
o
m
o

n
a
w

m
m
~
@
w

5. Each cell of a 2 x 2 * 2 cubeis to be filled with a single
digit so that the whole forms a_three- 1 4
dimensional cross-number puzzle. No Hs
digit is repeated, S indicates a perfect
square. H indicates half an even square, +S H H
or the integer part of half an odd square. ~*
Clues are given for both directions in the —H S S

upper plane; and for downward verticals,
the latter being indicated by letters 7 the appropriate cells.

 

 

    

6. There are exactly twelve ways of colouring the edges of a
pentagon with five given colours (one colour to each edge),
provided we count rotations andreflections of any colouring
as identical colourings. ‘There are also twelve pentagonal
faces to a regular dodecahedron. Colour each edge of a
dodecahedron in such a way that every possible pentagonal-
colouring appears as a face. Here is a diagram and table.

Possible Colourings

12345 equals 15432 A

12354 » 14532B
12435 » 15342 C
12453 » 13542D
12534 » 14352E
12543 » 13452 F
13245 » 15423G
13254 » 14523H
13425 » 15243 J
13524 » 14253K
14235 » 15324L
14325 » 15234M
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7. A. The total number of true statements in this problem is

O or I or 3.

B. The total number of true statements in this problem is

I or 2 or 3.

C. The total number of true statements in this problem
(excluding this one) is 0 or I or 3.

D. The total number of true statements in this problem

(excluding this one) is I or 2 or 3.

Which of the above statements are true?

8. Using only the shapes shown below,ortheir reflections, build

two 5 X 5 squares using no shape twice. (A shape and

its reflection are counted as the same).

i Eb EL th fb PF,A Bn Ee
g. Five identical boxes originally contained the same quantity

of sugar, but a little has been transferred from one to
another. Given an uncalibrated balance and no weights,
show how to identify both the heavy and the light box
with the least number of weighings.

 

  
 

 

       

10. Prove that on neither of the accompanying networks is there
a closed polygon containing all the vertices. In the first
figure, the lines only meet at the ringed vertices, so that
the network is really three-dimensional.

 

  
 



 

Crossword

By G . BERRY

 
ACROSS

7. These should be in strict one
to one correspondence (8, 7).

8. Of astronomical interest al-
though a microscope sounds
appropriate (4, 4).

10. Of hydrodynamical interest
perhaps? (7).

11. They often form a criterion
for consistency (5),

12. Solid figures indicating rough
seas (5).

14. This confused surface suggests
retribution (5).

15. It may be namedafter 2 down
and obviously belongs to him
when inverted (4).

16. Artist and direction pive
causes of suffering (4).

17. Finite set from over the
border (4).

19. Meeting of two branches (4).
21. Groups with at least six

members (5).
22. Raw material taken from

chopped up theorems. Only

18

18

DOWN
. Mixed colours and a news’

bearer. Either is an adequate
description of a curve (5,2,7).

. His laws are related to wave

theory (7).
Determinant part (5).

. Solutions under 19 down may-
be (5).

. Surfaces and fields of action

(7).
. Homer made lament (anag.).
The first may pave the way
for the second (5,3,7).
Functions without the man
are practically the same (4).
Lines are generally so in spaces
of more than two dimensions

(4).
. Subtraction of fifty gives
trader’s action (5).
Solid. With dried plums, only
a manner of speaking! (5).

. Transformation of interest to

fiddlers (7).
Ten again is the nearest (4).



 

ACROSS DOWN

fit for burning, colloquially (5). 19. Solid useless to the gardener

 

23. Starting point often self- (4).
evident (5). 20. 9 down has one of these,

25. Euclid’s S are geometri- producing monotony (7).
cal (7). 23. Sphere of man or beast (2,3).

26. Operator. Confused ancient 24. Large number lost in the
poet sir! (7). of a fog (5). 

27. A door must be so set (4,2,6,3).

The solution to this crossword will be printed in our next issue.

Chessmas

By R. SCHWARZENBERGER

SEVEN mathematicians were once shipwrecked on an island. They
immediately set to work mining chalk, painting blackboards,
weaving dusters and carving chessmen so that they would not
have to abandon the modeof life which they found so congenial.
Their housing problems were easily solved: around thecliffs of the
island were seven caves each with access to a path along the shore,
and easily reached from the Lone Pine which marked the centre
of the island.

Each evening they would meet in one of the caves and decide
where each should sleep that night by the following device: two
by two they would play chess until a game was won or lost. Then
the winner would leave (clockwise) for the neighbouring cave. The
loser (anticlockwise) would do the same. As soon as more than
one person arrived at a cave the procedure would be repeated.
Every night, no matter in what order the games were played, or
how long they took, fourteen games were played to a result before
the seven mathematicians slept separate and undisturbed.

But one of the mathematicians (wiser than the rest) slept longer
than the others. For each night as the chess started he would
withdraw to a corner and let the other six choose their partners.
Knowing that in a few hours everyone would have left the cave
he went straight to sleep. Even when someone arrived eager to
play chess, he slept on, knowing that soon a second wouldarrive

and that they would play chess and both depart.

The younger mathematicians met by the Lone Pine to discuss
this antisocial behaviour and to find ways of ensuring that all
should play more chess. Surely the system could be modified
so that more than a mere fourteen games were played eachnight.
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And this is what they decided: Instead of starting all at the same
cave each of the seven mathematicians would go to the Lone Pine
and roll a stone to decide at which cave he should begin. As soon
as two arrived at a cave chess would begin and the winner and
loser would move as before. By this method, it was hoped, more

than fourteen games would sometimes be played. If by any chance
no games were played a special holiday called Chessmas would be
declared the next day,

In high hopes of Chessmas the stone rolling began. Alas! That
night the chess continued until the dawn and would have gone
on forever had they been faithful to their plan. If only, they
said, we had been shipwrecked on a shore of infinite extent and
unlimited equidistant caves. Then we would have variety but
never more than twenty games each night.

The younger mathematicians were not put off. They constructed
an eighth cave and worked the plan just as before. Chessmas
now occurs several times a year and a special holiday of seven days
has been promised should there be a recurrence of the disaster
which caused the building of the eighth cave. So far this hasn’t
happened, nor indeed has a night with more than twenty games.
Can either occur?

The readeris invited to check the statements made and to solve
the questions raised, Will it do him any good? Yes, if ever he
is shipwrecked with 2 other unfortunate mathematicians. Vipers, Loes and All Thatpers, v

| By G. J. S. Ross

It is widely believed that the only mathematician in the Bible
was Noah. Nobody else would have had a hope of passing the
Eleven Plus. Admittedly, Moses’ Book of Numbers is frankly
disappointing, but I hope to show in this article that the Bible
contains evidence of a higher standard of mathematics than is
generally supposed.

Arithmetic is, of course, mentioned most frequently, and we

are told that men sometimes worshippedfigures.t At a very early
stage “men began to multiply,’? and Abraham was familiar with

20

Bee  
 



 

 

division. Some writers have pointed out that the arithmetic in
Ezra‘ is faulty, but this is explained whereit reads ‘‘certain additions
were madeof thin work.’® The approximation for 7 is reasonable,®
considering the fact that Moses destroyed the tables,’ which were
not replaced until Solomon’s time.§ Elsewhere we read “he shall
not extract the root thereof,’’® and “‘we wrestle against powers,’

The first attempts at Geometry were, of course, Euclidean. We

read that “great rulers were brought down,’“from Syracuse they
fetched a compass,’!2 and Noah constructed an arc!® and Ezekiel
described a line.4 Further progress was made when they took
axes,/® culminating in David’s success with the calculus.4®6 David,
incidentally, was the first to refuse to accept what he had not
proved.’ St. Paul was familiar with four dimensions,!®& and
Joshua continued with the arc along a Jordan path.’

Algebra, although thought to be an invention of the Arabs, was
only too familiar to the Jews. For instance, Moses gives instruc-
tions about a matrix®® and Ezekiel knew enough about rings to
describe them as “dreadful.” Peter was kept half the night by
four quaternions,”” and the Jews were described as ‘‘a generation
seeking after a sign.’’?8

‘As for the Pure, his work is right” said the writer of Proverbs,

and this attitude is reflected in the few existing references to
Applied Mathematics. ‘I have seen thy abominationsin the Fields’”’
cried Jeremiah,” and the Psalmist complained ‘“‘Thou hastafflicted
me with all thy Waves.’ Later the Father of Publius was “sick
of the bloody Flux.’’??

It is easy to understand why they disliked mathematics. Apart
from the deacons ‘‘who purchase to themselves a good Degree,’
they had to be examined, as was St. Paul.28 We know that Elisha
passed,®® and Solomon was able to answerall the questions,*! but
Peter was much troubled when he saw the sheet,®? and Job cried
“My kinsfolk have failed, and my friends.’Perhaps Jehoiakim
was an examiner, for nen he had read three or four pages he
cast it into the fire.’”’°4 As for St. John, all that he knew was
“the Second woe is past,“the Third cometh.’’®

1 Acts vil. 43. 2 Gen. vi. 1. ?Gen.xv.10. 4 Ezraii. 5 1 Kings vii. 29.
6 2 Chron. iv. 2. * Exod. xxxii. 19. 82 Chron. iv. 8. ® Ezek. xvii. 9.
10 Eph. vi. 12. 14Ps. 136. 17. 1% Acts xxviii. 13. 1% Gen. vi. (archaic
spelling). 14 Ezek. xl. 1 Sam. xiii. 21. 1481 Sam. xvii. 171 Sam,
xvil. 39. 18 Eph. iii. 18. 19 Joshuaiii. 2° Exod. xxxiv.1g. 7! Ezek. i. 18,

42 Acts xil. 4. 7% Math. xvi. 4. *4 Prov. xxi. 8. ™ Jer. xiii. 27. % Pa,
88.7. 2? Acts xxviil. 8. 281 Tim. ili. 13. 29 Acts xxvili. 18. *° 2 Kings
iv. 8. 312 Chron. ix. 2. %% Acts xi. %3 Job xix. 14. ™ Jer. xxxvi, 24,
35 Rev. xi. 14.
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Solutions to Problems
Last YEAR’S PRIZE CROSSWORD

Across: 1. Sinecure. 5. Cut. 8. Octagon. 9. Iota. 10. G-—in.
12. poINT Of. 13. Set (3 meanings). 16. E-uler. 18. Group.
19. Age. 21. Eyes. 23. One. 25. Ball. 26. Laplace. 27. Lie
(Sophus). 28. Integral (anag.).
Down: 1. Sloping. 2. Notation. 3. C-age. 4. Range. 6. Tram

(Trammel of Archimedeans = linkage for describing ellipse). 7. Sin.
tz. infinITE Mass. 14. Playfair. 15. Span. 17. Russell. 20. Gelon
(King of Syracuse). 22. Abel (= ro decibels), 23. gOLDen. 24.
collAPSE.
The first correct entry was received from C. D. RopGERS and

J. H. Conway.

NUMERICAL SQUARE:

a. 948 == 31% — 13 A. 9QIt = 307+ II
e. 42 = ae 7 B. 4902 = 707+ 2
g. IQ = 4°+ 3 D. 81 = 107— 19
h. 172 = 15° — 53 F, 22 = 5%7— 3
j. 10053 100% -+- §3 I. 7512 = 89? — 409
I 126 = «18+ 5 K. 344 = 197— 17
n. 14 5*§ 11 L. 17 = 6%— 19
p. 40 Q* 5 M. 68 = g— 13
Tr. 824 29 — 17

PROBLEMS DRIVE, 19509.

I. (i) Correct 17 to 15 (primes -+2).

(ii) Correct 11 to 10 (recurrence relation un;,; = 1 Un + Un_}).
(iii) Correct 19 to 21 (n* 4 n + 1).

2. A plane map can be drawn with as few as two arched crossings.
Shortest routes, of which there are four, pass through 33 small cells.

3- I XIX I, I | IX !, I | I +- I, V/(1/:T) + I,

{V(i/t)}l—1, (V(r/t)yt xi, (V/tyy t+ 4,
1/tI—1, 1/t XI, 1 I, © & I, I+ 2,

4. Solution in sacks per hour:
P to C 20, Oto A 5, QO to B 15,
R to C to, Sto A 15, StoC 5.

: * Bottom layer: 2 0
2 5 9

6. There are three essentially distinct solutions. A ring of ten
pentagonsis given for each solution. Each pentagon of a ring touches
the previous one along a line of the colour shown between the corre-
sponding letters. Thus in the first solution C touches M along a line
coloured 2 and B along a line coloured 4. (C will also touch K and H.)

G7) G5 K3M2C4Br1rH«zaAJ3L2E5 ArG,

ji) B2M5 K2F5Atr1H3L5E3D5 G1 B.

ji) E2L3D1G3Hi1 F3M2C1jJ3K1E.

Ae

5. Top layer:

 



 

 

 

7. Band true, A and false.

8. There are several solutions.

g. Weigh (i) AB against CD.

(ii) AC against BD

(iii) AD against BC.

Then AB >CD, AC > BD, AD > BC >A heavy, E light, and

similarly for all other combinations with no balancing at any stage.
If, say, AB = CD, then E must be normal, and neither of the other

two weighings can balance. Then if AC > BD, AD > BC, A would
be heavy and Blight. All possibilities are of these two types.

Io (i). We may suppose CK not in the path, by symmetry.

Then KJ, KF, CB, CD are all present.

If now AE were not present, the AB, AJ, ED, EF wouldall be

members of the path, and these form a complete path not containing GH.

Therefore AE is present. Now not both AB and DE can be present,
as that we may suppose AB absent, and therefore AJ and BGare
present. Then JH is absent and therefore DH and HG present.

Now GHDCBis a complete pentagon, all of which is present, and
this is a contradiction.

(ii) Call LNOVW black vertices and the others white. Then any
complete path must traverse alternately black and white vertices.
But this is impossible since there are 5 black vertices and 6 white.

Explorer’s Problem

Prof. R. L. Goodstein of Leicester has written to say that a
proof that the solution of the Explorer’s Problem given by I. C.
Pyle in Eureka 21 is the best possible is given by G. G. Alway in
the Mathematical Gazette, XLI (1957), p. 209.
The Scientific American posed this problem to their readers in

May, 1959, and quoted Eureka on the solution in their June issue.
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Trigonometric Series
A. ZYGMUND

An expanded version of Professor Zymund’s Trigonometric
Series of 1935. ‘The first volume contains the original
material, completely rewritten; the second volume includes
much that has not been available in book form. SECOND
EDITION Each Volume 84s. net

Fallacies in Mathematics
EK. A. MAXWELL

An entertaining and instructive book. Dr. Maxwell takes
examples of a numberoffallacies in mathematics, states the
argument of cach, and explores the error it contains. ‘To
instruct through entertainment is the declared aim of
Fallacies in Mathematics . . . and how well the author
succeeds in this task.’” H1i1GHEer EDUCATION JOURNAL

13s. 6d. net

General Homogeneous Coordinates

in Space of ‘Three Dimensions
KE. A. MAXWELL

A short introduction to algebraic geometry in space of three
dimensions which prepares the way for further study. The
book wasfirst published in 1951 and has now been reprinted.

Students’ Edition (Paper-bound) 13s. 6d. net

Library Edition (Cloth-bound) 22s. 6d. net

A Course of Pure Mathematics
G. H. HARDY

A students’ edition of this standard introduction to the
principles of pure mathematics for first year undergraduates
is now available. 522 pages

Students’ Edition (Paper-bound) 22s. 6d. net

Library Edition (Cloth-bound) 35s. net

CAMBRIDGE UNIVERSITY PRESS
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Book Reviews
Trigonomeiric Series. By A. ZyGMUND. VolumeI, 383 pp. Volume

II, 354 pp. (Cambridge University Press, 1959.) 104 in. 848.
per volume.

This work is an entirely new edition of the great classic on Trigono
metric Series and Fourier Analysis by Professor Zygmund. It has
been completely rewritten and greatly expanded to reflect the growth
in this subject in recent years, so that the work is now morethan
double the size of the first edition. The central topic is the repre-
sentation of functions by trigonometric series of the type

co

4a) +> cos v¥ + b, sin vz),

v=I

and Fourier series of the type
oe

><yere

y= — 0

but the work covers in detail a wide range of topics in the field of con-
vergence and divergence of series, Lebesgue integrals, and summability
in general.
Volume I contains the classical theory of trigonometric and Fourier

analysis, whilst volume II contains the newer developments of the
subject such as the concept of generalized derivatives and various
topics in the field of multiple Fourier analysis.
Much of the material in the second volume is based on new work by

Professor Zygmund and Professor Salem which has not previously
appeared in print. The price, £4 4s. for each volume, is high enough
to make the average undergraduate or research student pause before
buying, but the work is a fundamental text for anyone hoping to do
serious work either in general analysis or in the Fourier field in
particular.

In Volume One the principles of the theory are analysed and ex-
plained in a clear, detailed and rigorous manner. There are many
theoretical examples at the end of every chapter, so that the student
can test his grasp of the text, but it is a pity that there are no actual
numerical examples in the text nor in the exercises. In these days,
such a work will be read not only by the theorist, but also by the
practical worker in other fields, who will wish to make use of these
theorems and techniques as tools in his work. A chapter outlining
the special numerical methods or actually using these methods would
not have been out of place here, with perhaps some mention of the
wide applications in, for example, crystallography, or other branches
of physics, chemistry and engineering. Many times in the earlier
chapters a few more practical examples might have throwngreatlight
on the points so ably and rigorously discussed in the text, and might
have been very helpful to the not strictly mathematical reader. It
is rather a pity also, in a work intended primarily for fundamental
reference purposes, that volume one, containing as it does the more
elementary parts of the theory, does not contain any separate index.

In Volume Two the modern extensions of the classical theory are
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Hi explained. Dr. Zygmund devotes a chapter to the differentiation of

i Fourier series, and generalized symmetric and unsymmetric derivatives,

i and the central theorem of Littlewood-Paley is treated in detail. It

Hl should be noted that the formulae 2.36,37 on p. 253 are stated in an

Hi incomplete form, a laxity of presentation not found elsewhere in a work

i of such high standard and quality. There are no lists of the more

popular transforms, since presumably the author expects the student

to know that these are readily available elsewhere.
i The strong differentiability of multiple integrals and the restricted

H summability of multiple series are considered, proofs being given in

detail, in many cases for the first time.
The unsolved problems in the theory, such as convergence and

divergence almost everywhere, the structure of the sets of uniqueness

and the structure of functions with absolutely convergent Fourier

series together with the many extensions possible in the multiple field

are outlined and the way signposted for other research workers in these

fields to make future discoveries and developments in the subject.
The binding and printing of the books are of the uniformly high

standard which we have cometo take for granted in the work of the

Cambridge University Press, and this work, with its careful, rigorous

and detailed proofs, and its high quality of scholarship, is an essential

for any mathematical library, and for any serious student of analysis.
L. J. SLATER

 

Multivalent Functions. By W. K. HayMan. viii, 152 pp. (Cam-
bridge Mathematical Tracts No. 48, 1958.) 84 in. 27s. 6d.

This is the first expository account of a subject which has grown up
in original papers. The subject does not seem to be fundamental to
any other part of mathematics—any interest it has is intrinsic. The
author develops results giving bounds and asymptotic expressions for
certain functions (e.g. modulus, coefficients) associated with a complex
valued function f of a complex variable analytic in a domain D when
various restrictions are placed on the number of solutions of the
equation f(z) = w in D. For example, if it has at most p solutions
in D for each w « C, then fis called p-valent. We then have the unsolved
problem “If f is 1-valent in |z|<1 and reduced to the standard form
f(z) = 2+ age? 4+-..., then |a,|<mn."’ More general types of p-valent
functions are considered in which the ‘“‘average’’ number of solutions
of f(z) = w is restricted.
The author claims that most of the background for reading the book

would be contained in an undergraduate course. ‘This includes elemen-
tary theorems on complex powerseries, contour integration, the elements
of conformal mapping and the maximum modulus theorem together
with its immediate consequences. However, since the subject proceeds
by intricate results of a classical nature, there is a very real need for the
reader to have both a taste for such mathematics and an appreciation
of the value of the results. This is particularly necessary as, while
the first paragraphs in each chapter give a very good guide to the
methods of that chapter, there is no general motivation.
The subject does not seem to afford much scope for a “bright”

or original tract. One would perhaps wish for a more geometrical
approach to some of the earlier confromal problems but it is good
exercise for the reader to provide the required diagrams. The more
dificult ones are provided by the author. B. E. JOHNSON.
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Fallacies in Mathematics. By E. A. MAXWELL. Xi, 95 pp. (Cam-
bridge University Press, 1959.) 8} in. 13s. 6d.

Dr. Maxwell’s new book is written ‘‘to instruct through enter-
tainment ... to amuse the professional, and help to tempt back to
the subject those who thought they were losing interest.’’ It is to
be recommended to both these groups of readers, and the school-
teacher who has to do daily battle with fallacies in the classroom
should certainly read it. The author’s ‘‘general theory is that a wrong
idea may often be exposed more convincingly by following it to its
absurd conclusion than by merely denouncing the error and starting
again.”

Having illustrated in chapter | the distinction between a mistake,
a howler (‘‘an error which leads innocently to a correct result’’) and
a fallacy (one which “‘leads by guile to a wrong by plausible conclu-
sion’), the author uses chapter II to state four geometrical fallacies.
These are discussed carefully in the next three chapters where it 1s
shown that the usual axioms of elementary geometry are insufficient
foundation for Euclidean geometry, for they take no account of ideas
which underlie such words as inside, outside and between. ‘The

analysis of the fallacy that every triangle is isosceles is surprisingly
far-reaching and we even find that Ptolemy’s theorem and determinants
have some bearing on the problem.

Chapters VI to VIII cover fallacies in algebra, trigonometry and
calculus, many of which arise in connection with multiple-valued
functions. Thus in algebra a failure to realize that —1 had two square
roots +7 can lead to a “proof” that +1 = —1, and in trigonometry
a numberof fallacies stem from equating two distinct values of sin~? A.
Again the substitution y = sin v in an integral is only valid if sin ¥ is
monotonic over the range of integration. The explanation on p. 60
of the fallacy on p. 55 might have been clearer: the phrase “‘turning
values of x’ has no meaning when ¥ is considered as the independent
variable.

Circular points at infinity and some “‘limit”’ fallacies take up chapters
IX and X and the book closes with a collection of astonishing howlers
which the author assures us are genuine.

In less than a hundred pages Dr. Maxwell has written a charming
and lively book. The fallacies that there are no points inside a circle
(p. 18) and the two in chapter VI which hinge on the fact that the
equation tan z = 7 has no complex solutions are particularly neat.
Finally, the author’s expositions are generally so clear that although
the book contains four ‘‘proofs’” that every triangle is isoscles, the
reviewer still doesn’t believeit. K. R. McLEAN

An Analytical Calculus. Volume IV. By E. A. MAXwELL. Xiv,
288 pp. (Cambridge University Press, 1957.) 8? in. 22s. 6d,

This is the last of four volumes by Dr. Maxwell on Analytical Calculus,
Dr. Maxwell found himself compelled to include in this volume more
analysis than he originally intended; as a result the book is nearly
a hundred pages longer than the other volumes.
The first section of the book deals with ordinary differential equations,

The importanceof linear independence, in connection withtheir solution

is emphasised. Early use is made of the notation D
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it is never used formally for the evaluation of particular integrals

as in (D — p)-1. A good chapter on the solutions in integral form for
linear differential equations with constant coefficients is included.

In the second section the theory of convergence is taken as far as
the concept of uniformity of convergence and its application to the

integration and differentiation of infinite series. Theoremsin analysis,

such as that an increasing function which is bounded above tends to

a limit are quoted where necessary. Difficulties such as this are never

glossed over although they may berelegated to a note at the end of

a proof. There are good chapters on series solutions and Fourier series

in this section. ‘The last section is concerned with Laplace’s equation

and related equations; these are treated briefly but quite adequately

for the level at which the book is written.
In common with the other volumes in this series arguments are given

in great detail and there are plenty of illustrations and examples. The

printing and lay-out of the book is to be commended highly.
J. E. RoBERTs.

General Homogeneous Coordinates in Space of Three Dimensions. By

E. A. MAXWELL. xiv, 169 pp. (Cambridge University Press,

1959.) Paper Edition, 13s. 6d.

As this text-bookfirst appeared eight years ago, it is already well-

known. This new edition, apart from being paper-backed instead of

bound,is identical with earlier copies. But as the paper-back brings

down the price nineshillings, it will be interesting to see whether this

trend finds favour among undergraduates. It is said that some have

bought this book solely because of its concluding chapter on the use

of the vector and matrix notation in geometry! But the preceding

chapters too are worth reading. Both the presentation and the

printing maintain the high standards of the author and the Cambridge

University Press, M. F.

The Two Cultures and the Scientific Revolution. By C. P. SNow.

52 pp. (Cambridge University Press, 1959.) 7% in. 3s. 6d.

This penetrating and thought-provoking essay was presented as

the 1959 Rede Lecture in Cambridge. The author begins by sketching

the two cultures, scientific and ‘‘intellectual,’’ separated by a great

gulf. Each culture loses greatly by its lack of contact with the other.

The intellectuals have not yet begun to understand even the old

industrial revolution, much less the newscientific revolution. It is

essential to bridge the gap between them. Living, as we do, ina densely

populated island with few natural resources our real assets are our wits.

But unless we educate ourselves to the best of our ability we may

watch a steep decline in our fortunes within our lifetime, as the

Venetian Republic declined in the past. This is our local problem,

but the Venetian shadow may fall over the entire West unless we

realize the great need to bring aboutthescientific revolution throughout

the world. He ends ‘For the sake of intellectual life, for the sake of

this country’s special danger, for the sake of western society living

precariously rich among the poor, for the sake of the poor who needn't

be poor if there is intelligence in the world, it is obligatory forus...

to look at our education with fresh eyes.’’ The careful argument

of the essay is well-supported by reasons. M. F.
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