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Introduction

These notes are based on the course “Probability” given by Prof. F.P. Kelly in Cam-
bridge in the Lent Term 1996. This typed version of the notes is totally unconnected

with Prof. Kelly.
Other sets of notes are available for different courses. At the time of typing these

courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s

Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/


http://www.istari.ucam.org/maths/
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Chapter 1

Basic Concepts

1.1 Sample Space

Suppose we have an experiment with aieff outcomes. Thef is called the sample
space. A potential outcome € € is called a sample point.

For instance, if the experiment is tossing coins, thes {H, T}, or if the experi-
ment was tossing two dice, théh= {(i,5) : i,7 € {1,...,6}}.

A subsetA of Q2 is called an event. An event occurs is when the experiment is
performed, the outcome € Q satisfiesv € A. For the coin-tossing experiment, then
the event of a head appearingds= {H} and for the two dice, the event “rolling a
four” would be A = {(1,3),(2,2),(3,1)}.

1.2 Classical Probability

If Qis finite, @ = {w1,...,w,}, and each of the sample points is “equally likely”
then the probability of everl occurring is

_ A

=1

Example. Chooser digits from a table of random numbers. Find the probability that
for0 <k <9,

1. no digit exceeds,
2. kis the greatest digit drawn.
Solution. The event that no digit exceedss
A ={(a1,...,a;):0<a; <kji=1...r}.
Now [A| = (k + 1)", so thatP(Ax) = (&5L)".

Let By be the event that is the greatest digit drawn. Thé}’k' :Ak \ Agx_1. Also
Aj—1 C Ay, sothaBy| = (k+1)" — k". ThusP(By) = $H=F O
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The problem of the points

Players A and B play a series of games. The winner of a game wins a point. The two
players are equally skillful and the stake will be won by the first player to reach a target.
They are forced to stop when A is within 2 points and B within 3 points. How should
the stake be divided?

Pascal suggested that the following continuations were equally likely

AAAA AAAB AABB ABBB BBBB
AABA ABBA BABB
ABAA ABAB BBAB
BAAA BABA BBBA
BAAB
BBAA

This makes the ratiol : 5. It was previously thought that the ratio shouldtbe4
on considering termination, but these results are not equally likely.

1.3 Combinatorial Analysis

The fundamental rule is:

Suppose experiments are such that the first may result in any;gbossible out-
comes and such that for each of the possible outcomes of the firstexperiments
there aren; possible outcomes to experiment.et a; be the outcome of experiment
Then there are a total §ff;_, n; distinctr-tuples(as, ..., a,) describing the possible
outcomes of the experiments.

Proof. Induction. O

1.4 Stirling’s Formula

For functionsg(n) andh(n), we say thay is asymptotically equivalent th and write
g(n) ~ h(n) if % — lasn — oo.
Theorem 1.1 (Stirling’s Formula). Asn — oo,

|
og "

V2rnnte™"
and thusn! ~ v2mnn"e™".

We first prove the weak form of Stirling’s formula, thag(n!) ~ nlogn.

Proof. logn! = "] log k. Now

n n n+1
/ log xdx < Z logk < / log xdzx,
1 1 1

and [ logz dz = zlogz — z + 1, and sO
nlogn —n+1<logn! < (n+1)log(n+1) — n.

Divide by nlogn and letn — oo to sandwich:flig’i between terms that tend fo

Thereforelog n! ~ nlogn. O
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Now we prove the strong form.

Proof. Forz > 0, we have

. 1
l—z+a22—22< — <1—z+2%
1+

Now integrate fron to y to obtain
2 3 4 2 3
Y=y /24y /3 -y /A <log(l+y) <y-—y /2+y’/3.
Leth,, = log e Thelﬂwe obtain

1 ! <h h < ! + !
1202 12p3 — " L= 1op2 g3

Forn > 2,0 < hy, — hpt1 < # Thush,, is a decreasing sequence, ahd&
ho—hni1 < S o(he—hyi1) <507 5. Thereforen, is bounded below, decreasing
so is convergent. Let the limit hé. We have obtained

n! ~ en /2,

We need a trick to findi. Let I, = 0”/2 sin” 6 df. We obtain the recurrende =
(2n)! (2" n!)?

T;llr,g by integrating by parts. Therefodg,, = me and/ls,1q = CTESHIE
Now I,, is decreasing, so

Ly Iy 1
1< 22 <2l 0 -,

T Dpy1 T Iang 2n

But by substituting our formula in, we get that

I, m2n+1 2 2w

- —.
24 e2A

12n+1 2 n €

Thereforee?4 = 21 as required. O

by playing silly buggers withlog 1 + %
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Chapter 2

The Axiomatic Approach

2.1 The Axioms

Let2 be a sample space. Then probabilitis a real valued function defined on subsets
of  satisfying :-

1.0<P(A) <1forAcCQ,

3. for a finite or infinite sequencd;, Ao, --- C Q of disjoint eventsP(UA;) =

> P(Aw).

The numbeiP(A) is called the probability of event.

We can look at some distributions here. Consider an arbitrary finite or countable
Q = {w1,ws,...} and an arbitrary collectiofip,, po, ... } of non-negative numbers
with sum1. If we define

it is easy to see that this function satisfies the axioms. The numbeps, ... are
called a probability distribution. If2 is finite withn elements, and ip; = p, = --- =
Pn = % we recover the classical definition of probability.

Another example would be to Ié2 = {0,1,...} and attach to outcome the
probability p, = 6_)\% for some) > 0. This is a distribution (as may be easily
verified), and is called the Poisson distribution with paramgter

Theorem 2.1 (Properties ofP). A probabilityP satisfies
1. P(A°) =1—-P(A),
2. P(0) =0,
3. if A C BthenP(4) < P(B),

4. P(AUB) = P(A) + P(B) — P(AN B).

5
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Proof. Note that? = AUA®, andANA¢ = (). Thusl = P(Q) = P(A)+P(A¢). Now
we can use this to obtai(f)) = 1 — P(0) = 0. If A C B, write B= AU (BN A°),
so thatP(B) = P(A4) + P(B N A°) > P(A). Finally, write AU B = AU (BN A°)
andB = (BN A)U (BN A°). ThenP(AU B) = P(4) + P(BN A°) andP(B) =
P(B N A) + P(Bn A°), which gives the result. O

Theorem 2.2 (Boole’s Inequality). For any Ay, As, - -- C Q,
P(U Al) <> E(M)
1 i
]P’(U AZ-) <> P(4)
1 i

Proof. Let By = A; and then inductively leB; = A; \ Ui_l By.. Thus theB;'s are
disjoint andJ, B; = |J,; A;. Therefore

() =r(yn)
= Z:P(Bi)

< Z]P)(AZ) asB; C A;.

Theorem 2.3 (Inclusion-Exclusion Formula).

©9-.2.(0r)

JjES

Proof. We know thatP(A4; U As) = P(A4;) + P(A42) — P(A; N A). Thus the result
is true forn = 2. We also have that

P(AjU---UA,) =PA1U---UA,1)+P(4,) —P((A1U---UA,_1)NA,).
But by distributivity, we have
n n—1 n—1
P(UAZ) = ]P’(U Ai> +P(A,) —]P’(U (A, ﬁAn)> :
i 1 1

Application of the inductive hypothesis yields the result. O

Corollary (Bonferroni Inequalities).

< n
> (—pBittp (ﬂ Aj) or ]P(U AZ-)
SC{l,...,r} jes > 1

540

according as- is even or odd. Or in other words, if the inclusion-exclusion formula is
truncated, the error has the sign of the omitted term and is smaller in absolute value.
Note that the case = 1 is Boole’s inequality.
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Proof. The result is true fon, = 2. If true forn — 1, then it is true fom and1 < r <
n — 1 by the inductive step above, which expressesunion in terms of twon — 1
unions. Itis true for = n by the inclusion-exclusion formula. O

Example (Derangements).After a dinner, then guests take coats at random from a
pile. Find the probability that at least one guest has the right coat.

Solution. Let A be the event that guekthas hi own coat.
We wantP(|J;—, A;). Now,

(n—m)!
n!

P(A;, N NA; ) = :

by counting the number of ways of matching guests and coats after. , i, have
taken theirs. Thus

S PN N4 = (n)(nr)! =l7

, ) r n! 7!
1< <y

and the required probability is

n
11 (=1)n1
P(LJ1A¢> :1_§+§+.'.+T’

which tends tal — e~ ! asn — oc. O

Furthermore, leP,,, (n) be the probability that exactly. guests take the right coat.
ThenPy(n) — e~! andn!Py(n) is the number of derangementsrobbjects. There-
fore

n\1lxPy(n—m)x(n—m)!
puie) = () LBl =) 0=
_ -1
_Poln—m) e
m/! m!

2.2 Independence

Definition 2.1. Two eventsA and B are said to be independent if
P(AN B) =P(A)P(B).
More generally, a collection of events, i € I are independent if
P(ﬂ Ai> = H]P’(Ai)
e ieJ
for all finite subsets/ C I.

Example. Two fair dice are thrown. Le#i; be the event that the first die shows an odd
number. Letd, be the event that the second die shows an odd number and finally let
Az be the event that the sum of the two numbers is odd.AArend A, independent?

Are A; and A3 independent? Arel;, A; and A3 independent?

1'm not being sexist, merely a lazy typist. Sex will be assigned at random...
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Solution. We first calculate the probabilities of the eveAts As, A3, A1NAs, A|NA;3
andA1 N Ay N As.

Event Probability
18 __ 1
Ay 36~ 2

A, As above i
6x3 1
As e
mna | -
andy | %

A NAyN A 0

Thus by a series of multiplications, we can see thaand A, are independentd;
and A3 are independent (alsé, and A3), but thatA,, A, and A arenotindependent.
O

Now we wish to state what we mean by “2 independent experin@n@dnsider
0 ={aq,...}andQy = {f,. .. } with associated probability distributiofs,, . .. }
and{qi,...}. Then, by “2 independent experiments”, we mean the sample space
1y x Qo with probability distributionP((c;, 8;)) = pig;-

Now, supposed C 2, andB C ;. The eventd can be interpreted as an event in
Q1 x Q, namelyA x Q,, and similarly forB. Then

a; €EA a; €A (;€EB
ﬂj €B

which is why they are called “independent” experiments. The obvious generalisation
to n experiments can be made, but for an infinite sequence of experiments we mean a
sample spac@; x Q5 x ... satisfying the appropriate formuta € N.

You might like to find the probability that independent tosses of a biased coin
with the probability of heads results in a total of heads.

2.3 Distributions

The binomial distribution with parametersandp, 0 < p < 1 hasQ = {0,...,n} and
probabilitiesp; = (7})p*(1 — p)" "

Theorem 2.4 (Poisson approximation to binomial).If n — oo, p — 0 withnp = A

held fixed, then
n r n—r —A A"
(r>p (1-p) —e

2or more generallyy.
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Proof.

(:f)pm e M= )

r!

nn—1 n—r+1(np)" e
— ( |) (1-p)
n o n n 7!

()R (o0)

s
—1x —xe
r!

A
e A

rl’

Ax1

O

Suppose an infinite sequence of independent trials is to be performed. Each trial
results in a success with probabilitye (0, 1) or a failure with probabilityl — p. Such
a sequence is called a sequence of Bernoulli trials. The probability that the first success
occurs after exactly failures isp,, = p(1—p)". This is thegeometric distributionwvith
parametep. Sinced_° p, = 1, the probability that all trials result in failure is zero.

2.4 Conditional Probability

Definition 2.2. ProvidedP(B) > 0, we define the conditional probability m‘\Bﬂto

be
P(AN B)

P(B)
Whenever we writ®(A|B), we assume th&(B) > 0.

Note that if A and B are independent thédh A|B) = P(A).
Theorem2.5. 1. P(AN B) =P(A|B)P(B),

2.P(ANBNC)=PABNC)P(B|C)P(C),

P(A|B) =

3. P(AIBNC) = BgllS),

4. the functioriP(o|B) restricted to subsets @ is a probability function or.

Proof. Results 1 to 3 are immediate from the definition of conditional probability. For
result 4, note thalN B C B, soP(AN B) < P(B) and thuP(A|B) < 1. P(B|B) =
1 (obviously), so it just remains to show the last axiom. For disjdifis,

_ P(U;(A; N B))
o)
> P(A;NB)
- PB)
= P(4;|B), as required.

3read “A given B".
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Theorem 2.6 (Law of total probability). Let By, Bs, ... be a partition of2. Then

P(A) = D P(A|B:) P(B;).

Proof.
Z P(A|B;) P(B;) = Z P(AN B;)
=P (U An BZ->

=P(A), asrequired.
O

Example (Gambler’'s Ruin). A fair coin is tossed repeatedly. At each toss a gambler
wins £1 if a head shows and losesl if tails. He continues playing until his capital
reachesm or he goes broke. Fing,, the probability that he goes broke if his initial
capital is £x.

Solution. Let A be the event that he goes broke before reacking and letH or
T be the outcome of the first toss. We condition on the first toss tdPgd) =
P(A|H)P(H) + P(A|T)P(T). ButP(A|H) = py4+1 andP(A|T) = p,—1. Thus
we obtain the recurrence

Pz+1 — Pz = Pz — Pzr—1-

Note thatp, is linear inz, with py = 1, p,, = 0. Thusp, =1 — .~. O

Theorem 2.7 (Bayes’ Formula).Let By, Bs, ... be a partition ofQ2. Then

_ P(A|B)P(By)
P(B;|A) = > P(A|B;)P(B))

Proof.
_P(AnB;) _ P(A|Bi)P(B))
P(B;|A) = P(A) X, P(A[B))P(B))’

by the law of total probability. O




Chapter 3

Random Variables

Let Q2 be finite or countable, and lgf, = P({w}) for w € Q.
Definition 3.1. A random variableX is a functionX : 2 — R.

Note that “random variable” is a somewhat inaccurate term, a random variable is
neither random nor a variable.

Example. If Q = {(¢,5),1 < i,5 < t}, then we can define random variabl&sand
Y by X (i,j) =i+ j andY (i, j) = max{i, j}

Let Rx be the image of) underX. When the range is finite or countable then the
random variable is said to be discrete.

We writeP(X = z;) for - ¢(,)—, P, @nd forB C R

P(X€B)= Y P(X=u).
zeB

Then
(P(X =z),2 € Rx)

is the distribution of the random variablé. Note that it is a probability distribution
overRx.

3.1 Expectation

Definition 3.2. The expectation of a random variahk is the number

E[X] = Z PuwX (W)

we
provided that this sum converges absolutely.

11
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Note that

]E[X] = Z pr(w)

weN

Z Z pr(w)

T€ERXx w: X (w)=x

=> z > ps

r€ERx w:X(w)=z

= Z 2P(X =x).

rERXx

Absolute convergence allows the sum to be taken in any order.

If X is a positive random variable and)f ., p, X (w) = oo we write E[X] =
“+oo. If

Z zP(X = x) = oo and
r€ERXx
x>0

Z P(X =z)= -

rERXx
z<0

thenE[X] is undefined.

Example. If P(X =7) = e~ 21, thenE[X] = \.

T

Solution.

E[X] :ZTef)‘)?‘n—,r
r=0
e A ZAUA
= de Z(r—w = e et =\
r=1

Example. If P(X =r) = (7)p"(1 — p)"~" thenE[X] = np.
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Solution.
EX] =S mp'(1—p) ("
; p(1-p (r>

= Tr!(nnir)!p"(l -p)"

’I’L—l)' T n—r
= i )

. (n_ 1)' r—1 n—r
= np; mp (1-p)
= (TL— 1)' r n—1—r
:np; IR (1-p)
[ty |
=n r(l )nflfr
p;( r )p p
=np

O

For any functionf: R — R the composition off and X defines a new random
variable f and X defines the new random variabféX) given by

FX)(w) = f(X(w)).

Example. If a, b andc are constants, them+ bX and (X — ¢)? are random variables
defined by

(a +bX)(w) =a+ bX(w) and
(X =)’ (w) = (X (w) - ).
Note thafE[X] is a constant.
Theorem 3.1.
1. If X > 0thenE[X] > 0.
2. If X > 0andE[X] = 0 thenP(X =0) = 1.
3. If a andb are constants theBR[a + bX] = a + bE[X].
4. For any random variableX’, Y thenE[X + Y] = E[X] + E[Y].
5. E[X] is the constant which minimis@}{(X - c)Q].
Proof. 1. X >0meansX,, > 0Vw € Q)

SOE[X] = > puX(w) >0
weN

2. If 3w € Qwith p, > 0 andX (w) > 0thenE[X] > 0, therefordP(X = 0) = 1.
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3.
Ela+bX] =Y (a+bX(w))p.
weN
:apr—t—prwX(w)
weN weN
=a+E[X].
4. Trivial.
5. Now
E[(X - ¢)’] =E[(X - E[X] +E[X] - ¢)?]
=E[[(X - E[X])*] +2(X - E[X])(E[X] - ¢) + [(E[X] — ¢)]’]
= E[(X - E[X])?] + 2(E[X] - ¢)E[(X — E[X])] + (E[X] - ¢)?
=E[(X - E[X])*] + (E[X] - ).
This is clearly minimised whea= E[X].
O
Theorem 3.2. For any random variableX, Xs, ...., X,
E ixi] = ZH:E[XA
Proof.
E zn:XZ} =E ni:lXiJan
i=1 =1
=E Sxi +E[X]
Result follows by induction. O

3.2 Variance

Var X = E[X?] - E[X]? for Random VariableX
— E[X - E[X]] = o
Standard Deviatiog= v Var X

Theorem 3.3. Properties of Variance

(i) Var X > 0if Var X = 0, thenP(X = E[X]) = 1
Proof - from property 1 of expectation
(i) If a,b constantsVar (a + bX) = b* Var X
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Proof.
Vara + bX = E[a + bX — a — bE[X]]

=b’E[X — E[X]]
=b2Var X
O
(iii) Var X = E[X?] - E[X]?
Proof.
E[X — E[X]]* = E[X? - 2XE[X] + (E[X])?]
= E[X?] - 2E[X]E[X] + E[X]?
=E[X?] - (E[X])*
O

Example. Let X have the geometric distributid(X = r) = pg” withr = 0,1,2...
andp + ¢ = 1. ThenE[X] = L andVar X = %.

Solution.

EX]=> rpq" =pgy _ rq"""
r=0 r=0

=1 i i(q") = pqi (L)
pq “= dq dg\1—q
24
=pg(l—q) ==
(I-4q) ’
E[XQ] _ Zr2p2q2r
r=0

=pq (i r(r+ 1) — i ,rqr—l)

r=1 r=1
(2 L%
T e
Var X = E[X?] - E[X]?
_ 29 g9 _4q

@w"Q %1\:
i
i

Definition 3.3. The co-variance of random variablé§ andY is:
Cou(X,Y) = E[(X — E[X])(Y — E[Y))

The correlation ofX andY is:

Cov(X,Y)

vVar X VarY

Corr(X,Y) =
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Linear Regression

Theorem 3.4. Var (X +Y) = Var X + VarY + 2Cov(X,Y)

Proof.

Var (X +Y) = E[(X +Y)? - E[X] — E[Y]]?
=E[(X —E[X])?+ (Y —E[Y])? +2(X —E[X])(Y —E[Y])]
= Var X + VarY + 2Cov(X,Y)

O
3.3 Indicator Function
Definition 3.4. The Indicator Functiorf [A] of an eventd C Q is the function
1, ifweA4;
I[A =<7 ’ A
[A]0) {o, if W Al 31
NB that/[A] is a random variable
1.
E[I[A]] = P(A)
E[I[A] = ) poI[Al(w)
wel
=P(4)

4,
I[AU B] = I[A] + I[B] — I[A]I[B]
IAUB](w)=1ifwe Aorwe B
[[AU B)(w) = I[A](w) + I[B](w) — I[A]I[B](w) WORKS!

Example. n > couples are arranged randomly around a table such that males and fe-
males alternate. Lel = The number of husbands sitting next to their wives. Calculate
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theE[N] and theVar N.

N = ZI[Ai] A; = event couple i are together

Var N = E[N?] - E[N]?
:%(1+2(n72))72
_ 2(n—2)

n—1
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3.4 Inclusion - Exclusion Formula

()

A;

y
)

N (&
I | =1 (ﬂAf)

1N
=1-T|()4

N 1
=1- ] 114¢]

y
=1-J[a-114]

ZI[Ai] - Z%& < ipI[Aq]1[As]

o (17T T[ANI[As). T[A] +

i1<42...<ij
Take Expectation
N

A

1

E

(39

N
= P(A) - > i1 <ipP(A1 N Ay)
1

_|_

o (CITT N P(AL NAL N NA)

i1 <iz...<ij

3.5 Independence

Definition 3.5. Discrete random variableX, ..., X,, are independent if and only if
foranyz;...x, :

Theorem 3.5 (Preservation of Independence). If
X4, ..., X, are independent random variables aifid f>...f,, are functionsR — R
then f1(X1)...f»(X,,) are independent random variables
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Proof.

PUAXD) =y, fa(X) =) = D> P(Xai=a1,.., Xy =)

:L‘ltfl (X1):y17---
Ty frn (Xn)=yn

P(f:(X:) = i)

N
11
1oz fi(Xa)=y;
N
Il

O
Theorem 3.6. If X;.....X,, are independent random variables then:
N N
E HX] :HE[XZ»]
1 1
NOTEthatE[} " X;] = > E[X;] without requiring independence.
Proof. Write R, for Rx, the range ofX;
N
E HXZ = Z Z $1..$HP(X1:(E1,X2:(E2 ....... ,Xn:fEn)
1 T1ER, Tp€ERy,
N
=11 ( > P(Xi= xi))
1 z;€ER;
N
= [[Exi]
1
O

Theorem 3.7. If X1, ..., X,, are independent random variables afid... f,, are func-
tion R — R then:
N

Hm&ﬂzﬂmm&n

1

E

Proof. Obvious from last two theorems! O

Theorem 3.8. If X4, ..., X,, are independent random variables then:

Var (i XZ) = iVar X;
i=1 i=1
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n 2 n
(Z XZ) ~E Z X;
=1 =1

Proof.

2

i)

L i#j i=1

=Y E[X7]+ ) E[X:X;] - Y E[X:]’ - Y E[X,]E[X,]
i i#j i i#]

= (E[x?] - EX.J*)
= ZVFHX:'

=E|) X?+> X;X;| -E

Theorem 3.9. If X1, ..., X,, are independent identically distributed random variables
then

Proof.
Var liX = iVarX—
n =1 Z N Tl2 '
1 n
=1
1
= —Var X;
n
O
Example. Experimental Design. Two rods of unknown lengthis A rule can

measure the length but with but with error having 0 mean (unbiased) and varignce
Errors independent from measurement to measurement. To estindates could take
separate measuremends B of each rod.
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Can we do better? YEP! Measuiet b as X anda — basY

EX]=a+b Var X = o?
EY]=a—-b  VarY =o?

X4y
E _ ;— | =a
X+Y 1,
Var 5 = 50
(X -Y
E =b
L 2 |
X-Y 1
Var = —g?
2
So this is better.
Example. Non standard dice. You choose 1 then | choose one. Around this cycle

a— BP(A>B)=3. So the relation 'A better that B’ is not transitive.
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Chapter 4

Inequalities

4.1 Jensen’s Inequality
A function f; (a,b) — R is convex if

flpr +qy) <pf(z)+ (1 —p)f(y)-Vo,y € (a,b) - Vp € (0, 1)

Strictly convex if strict inequality holds when+# y

fis concave if— f is convex. fis strictly concave if f is strictly convex

23
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Concave

neither concave or convex.
We know that if f is twice differentiable andl () > 0 for « € (a,b) the if fis
convex and strictly convex if (z) > 0 forz € (a,b).

Example.
f(z) = —logx
7 () = fl
fl)=—52>0
f(z) is strictly convex orf0, co)
Example.
f(z) = —zlogx
f (@) = =1+ logz)
! x) = _?1 <0

Strictly concave.
Example. f(z = 3 is strictly convex orf0, co) but not on(—oc, 00)

Theorem 4.1. Let f : (a,b) — R be a convex function. Then:

D opif(w) > f (Zm%)
i=1 i=1

Z1,..., X, € (a,b), p1,...,pn € (0,1) and>_ p; = 1. Further more if f is strictly
convex then equality holds if and only if all X's are equal.

E[f(X)] = f(E[X])
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Proof. By induction on nn = 1 nothing to proven = 2 definition of convexity.
Assume results holds up to n-1. Consider...,x,, € (a,b), p1,...,pn € (0,1) and

Yopi=1

Fori = 2..n, setp; = —2* such thathl =1
1- p =2
Then by the inductive hypothesis twice, first for n-1, then for 2

Ej:pifi(% =pif(z1) + (1 - p1) sz (x:)
Zpif(z) + (1 =p)f (ZPZ%>
> f (pm +(1—p1) Z;p;%)

f is strictly convexn > 3 and not all thex}s equal then we assume not all ©f...z,,
are equal. But then

(1 -p) Y pif(a) = (1 -p)f (zpﬂ)
1=2

So the inequality is strict. O

Corollary (AM/GM Inequality). Positive real numbers,, ..., z,

H Z; < - Z Z;
(i_l ) n =1
Equality holds ifand only ift; = 25 = --- = 2,

Proof. Let
P(X =2a;) =

:\'—‘

then f(z) = —log z is a convex function o0,
So

)-

8

E[f(x)] > f (E[z]) (Jensen’s Inequality)
~Eflog] > logE[z]  [1]

n

1 1
Therefore — -~ 21: logz; < —log -~ 21: T

DR

For strictness since f strictly convex equation holds in [1] and hence [2] if and only if
T =Ty =" =Ty O

IN
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If f: (a,b) — R is a convex function then it can be shown that at each point
y € (a,b)3 alinear functior, + [, such that

f(x) <oy + Byz z € (a,b)
f(y) = Oy +ﬂyy

If f is differentiable at y then the linear function is the tanggtw) + (= — y)f (y)

Lety = E[X], a = oy @andg = 3,

f(E[X]) = o+ BE[X]

So for any random variable X taking values(in b)

E[f(X)] > Elo + 3X]
= a + FE[X]
= [(E[X])

4.2 Cauchy-Schwarz Inequality
Theorem 4.2. For any random variableX, Y,

E[XY]? < E[X?] E[Y?]
Proof. Fora,b € R Let

LetZ = aX — bY
Ther) < E[Z%] = E[(aX — bY)?]
= a’E[X?] — 2abE[XY] + b*E[Y?]

guadratic in a with at most one real root and therefore has discrimiant
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Takeb # 0
E[XY])’ <E[X? E[v?]

Corollary.

|Corr(X,Y)| <1

Proof. Apply Cauchy-Schwarz to the random variabfés- E[X] andY — E[Y]

4.3 Markov’s Inequality

Theorem 4.3. If X is any random variable with finite mean then,

E[lX]]

P(|X|>a) < forany a> 0

Proof. Let

A=|X|>a
Then |X| > al[A]

Take expectation

4.4 Chebyshev’'s Inequality
Theorem 4.4. Let X be a random variable withi [ X?] < co. ThenVe > 0

E[X?]

P(IX[ =€) <

Proof.

2
x
I[|X|Z€]§€7VI

27
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Then

Take Expectation

Note

1. The resultis “distribution free” - no assumption about the distribution of X (other
thanE [ X?]| < ).

2. ltis the “best possible” inequality, in the following sense

X = +e with probabilityQ—CQ
€

—e with probabilityQ—CQ
€

— 0 with probability1 — —
€

ThenP(|X| > ) :632
E[XQ] =c

c E[X?

P(X[> €)= 5 = [62 ]

3. If p = E[X] then applying the inequality t& — . gives

Var X
<

= 62

P(X —u>e)

Often the most useful form.

4.5 Law of Large Numbers

Theorem 4.5 (Weak law of large numbers).Let X1, Xs..... be a sequences of inde-
pendent identically distributed random variables with Varianée< oo Let

i=1

Then
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Proof. By Chebyshev’s Inequality

El(S2 — )2
n €
E[(S, — nu)? _ '
- w properties of expectation
n<e
Var S,, _.
=32 SinceE[S,,] = nu
But Var S,, = no>
2 2
ThusP &*H Se) < 7
n n2e2 ne2

O

Example. 4,, A,... are independent events, each with probability p. Ket= I[A;].

Then )
Sn nA  number of times A occurs

n n number of trials
p=E[[A]] =P(4;) =p

Theorem states that

S

IP’(”p’Ze)HOasnﬂoo
n

Which recovers the intuitive definition of probability.
Example. A Random Sample of size n is a sequekg¢eXs, ..., X, of independent
identically distributed random variables ('n observations’)

n
X = Lz X is called the SAMPLE MEAN
n

Theorem states that provided the varianc&efs finite, the probability that the sample
mean differs from the mean of the distribution by more thapproaches 0 as — ~o.

We have shown the weak law of large numbers. Why weak3 a strong form of
larger numbers.

Sh
]P’( —>,uaSn—>oo> =1
n
This is NOT the same as the weak form. What does this mean?

w € ) determines

as a sequence of real numbers. Hence it either tend®tadt doesn't.

P(w:sn(w)ﬁuasnﬂoo)l
n
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Chapter 5

Generating Functions

In this chapter, assume that X is a random variable taking values in theGahge. . ..
Letp, =P(X =r)r=0,1,2,...

Definition 5.1. The Probability Generating Functiofp.g.f) of the random variable
X,or of the distributiorp, = 0,1,2,...,is

Thisp(z) is a polynomial or a power series. If a power series then it is convergent for
|z| <1 by comparison with a geometric series.

p() <D el <D pr=1

Example.
1
pr'_gr_la a6
1 X
p(z)*]E[zX} :6(1+Z+...26)
751726
61—z

Theorem 5.1. The distribution of X is uniquely determined by the ppgzf).

Proof. We know that we can differential p(z) term by term fof < 1

/

p(2) =p1+2p2z+...
andsop (0)=p;  (p(0) = po)

Repeated differentiation gives

> !
(L) o r. r—g
Pi) = 2 -’
and hagp® = 0 = ilp;, Thus we can recover, p1, ... from p(z) O

31
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Theorem 5.2 (Abel's Lemma).

E[X] = lim p/(z)

z—1

Proof.
p'(z) = errzr_l |z] <1
r=1%
Forz € (0,1), p'(2) is a non decreasing function of z and is bounded above by
E[X] =Y rp,

Choose > 0, N large enough that

N
er,. >E[X]—¢

Then
[e%s) N N
3 r—1 3 r—1 __
;Lmlzrprz > ,leerpTZ = err
r=t r=t r=1

TrueVe > 0 and so
E[X] = lim p/(z)

Z—)l
O
Usuallyp/(z) is continuous at z=1, thdB[ X | = p’(1).
21— 26

(Recallp(z) =513 )
Theorem 5.3.

E[X(X —1)] = lim p"(2)
Proof.

p'(z) = r(r—1)pz">

r=2

Proof now the same as Abel's Lemma O
Theorem 5.4. Suppose thak, Xs, ..., X, are independent random variables with

p.9.f'sp1(2),p2(2), ..., pn(2). Then the p.g.f of
X1+ Xo+... X,

p1(2)p2(2) - .. pu(2)
Proof.
E[ZX1+X2+”‘X"] = ]E[ZXI.ZX2 ... .zX"]
= E[ZXI} E[zxﬂ .. .]E[ZX“]
=p1(2)p2(2) ... pn(2)
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Example. Suppose X has Poisson Distribution

Then

Let’s calculate the variance of X

p' — )\e—k(l—z) p” _ )\26—/\(1—,2)

Then
E[X] = lim p () = p (1)( Sincep (z) continuous at = 1 )E[X] = A
EX(X -1)]=p (1) =\
Var X = E[X?] - E[X]?
= E[X(X —1)] + E[X] - E[X]?
=N+ A2
=\

Example. Suppose that Y has a Poisson Distribution with parametdf X and Y are
independent then:

E[zX+Y] = E[ZX} E[zy}
— o M1=2) ,—p(1-2)
— o~ (A m)(1=2)
But this is the p.g.f of a Poisson random variable with paramgter.:.. By uniqueness
(first theorem of the p.g.f) this must be the distributionXor Y

Example. X has a binomial Distribution,

P(X =) = <’:>pr(1 —p)" " r=0,1,...

E[ZX] _ Zn: <:)pr(1 )T

r=0

=(pz+1-p)"

This shows thak = Y; + Y5 + - -- + Y,,. WhereY; + Y, 4 --- + Y, are independent
random variables each with

PY,=1)=p BY;=0)=1—p

Noteif the p.g.f factorizes look to see if the random variable can be written as a sum.
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5.1 Combinatorial Applications
Tile a(2 x n) bathroom with(2 x 1) tiles. How many ways can this be done? Jay

fn = fao1+ fa_2 fo=fi=1

Let )
n=0
fn2" = fno12" + fn22"
D Fnd =) faad 4 Y fas”
n=2 n=2 n=0
F(2) = fo— 21 = 2(F(2) — fo) + 2*F(2)
F(2)(1 —2z—2%) = fo(1—2)+zf1
=1—-—z4+2z=1.
Sincefy = fi = 1, thenF(z) = ——
Let
1++5 1-v5
o = Qo =
2 2
1
F(z) = (1—a12)(1— azz)
o751 Q2

(1-—a12) (1—ag2)

1 oo o0
= o E alz” — oo E ag 2"
a1 — Q2 ne0

n=0

The coefficient ok?, thatisf,, is

1
fn= m(a?ﬂ - 043“)

5.2 Conditional Expectation

Let X andY be random variables with joint distribution
P(X =2Y =y)
Then the distribution of X is

P(X=2)= Y PX=2zY=y)
yERy

This is often called the Marginal distribution fof. The conditional distribution foX
given byY =y is

P(X =z|Y =y) =
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Definition 5.2. The conditional expectation of X givéh= y is,

EX =azlY =yl = > aP(X =z|Y =y)
rER,

The conditional Expectation of X given Y is the random vari&i€|Y] defined by
EX[Y](w) = EX]Y =Y (w)]
ThusE[X|Y]: Q2 — R

Example. Let X1, X5,..., X,, be independent identically distributed random vari-
ables withP(X; = 1) = pandP(X; =0) =1 — p. Let

Y =X1 4+ Xo4 -+ Xp

Then
PXy=1Y =r)= P(XED;Z};): r)
— IP>(AX'1 :17X2++Xn:7“—1)
P(Y =r)
CPX)P(Xot o+ Xy =7 1)
P(Y =7)
_ p(ﬁ:%)pril(l — p)nfr
(:)p’“(l —p)nr
_ (o)
(")
Then

EX;|Y =] = 0x P(X; = 0]Y =7) + 1 x P(X; = 1|Y = 1)
T

n

1
E[X,]Y = Y ()] = -Y(w)
ThereforeE[ X, |Y] = lY
n

Notea random variable - a function df .

5.3 Properties of Conditional Expectation

Theorem 5.5.
EE[X]Y]] = E[X]
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Proof.

EX|Y]| = > PY E[X|Y =]
yeR,

=Y Py =y Y P(X=u|Y =y)

TER,
:ZZxP(X:m|Y:y)
Yy €T

= E[X]

Theorem 5.6. If X andY are independent then
E[X|Y] =E[X]

Proof. If X andY are independent then for agyc R,

EX[Y =y = > aP(X =2V =y) =) aP(X =) =E[X]
TER, x

Example. Let X, X5, ... be ii.d.rv's with p.g.fo(2). Let N be a random variable
independent oK, X5, ... with p.g.fa(z). What is the p.g.f of:

X1 +Xo+--+ XN

E[ZX1+""*X"] _ E[E [ZXlJr,.u,Xn‘NH

S XocbuesXo | — 1]
0
=3 P(N =) (p(2))"
n=0
= h(p(z))
Then for example
B X = SR
= 1'(1)p (1) = E[N]E[X/]

ExerciseCaIcuIate%h(p(z)) and hence
Var X1+,..., X,

In terms ofVar NV andVar X
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5.4 Branching Processes

Xo, X1 ... sequence of random variables,, number of individuals in the'” gener-
ation of population. Assume.

1. Xp=1

2. Each individual lives for unit time then on death produkesfspring, probabil-
ity fi. 2o fr =1

3. All offspring behave independently.
Xppr =Y"+Y5' + -+ Y7
WhereY;™ are i.i.d.r.v’s.Y;” number of offspring of individual in generatiom.

Assume

1L fo>0

2. fo+f1 <1
Let F(z) be the probability generating functiorgf.

F(z)= i fedt = E[z*] = E[zyn}
n=0

Let
E(2) =E[z*"]

ThenF;(z) = F(z) the probability generating function of the offspring distribution.

Theorem 5.7.
Foii(2) = Fu(F(2)) = F(F(... (F(2))...))

F,(z) is an n-fold iterative formula.
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Proof.

[
(]
pac}
b
3
[
=
=
N
=3
+
3
+
i
53

O
Theorem 5.8. Mean and Variance of population size
If m= Z kfi < oo
k=0
ando? = Z(k —m)%fr < oo
k=0
Mean and Variance of offspring distribution.
ThenE[X,] = m"
oZm™ (m"—1)
Var X, = { St M7l (5.1)
no-, m=1

Proof. Prove by calculating” (z), F" (=) Alternatively

E[X,] = E[E[X,| X5 —1]]
= E[m|X,_1]
= mE[X,,_1]
= m" by induction
E[(X, —mX,_1)?] =E[E[(X, — mX,_1)*| X,]]
= E[Var (X,| X, 1)]
=E[0?X,_1]

=om

Thus

E[X2] — 2mE[X,, X, 1] + m*E[X2_,]* = o?m" !

n—1
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Now calculate

E[Xan—ﬂ

E[E[XnXn—1]Xn-1]]
7L_1E[Xn|Xn—1]]

nflanfl]

E[X
E[X

mE[X2_,]
ThenE[X2] = o?m"~! + m*E[X,,_]?
Var X,, = E[X?] - E[X,,]?
=m’E[X]_,] +o*m" ! — m?E[X,_1]°
=m?VarX,_; +c’m" !
=m*Var X,_o + o?(m™t +m")
=m? "D Var X; + o?(m" L+ m" 4 -+ m? )

=*m" M l+m+---+m")

To deal with extinction we need to be careful with limitsras- co. Let

A, =X,=0
= Extinction occurs by generation

and letA = G A,
1

= the event that extinction ever occurs

Can we calculat®(A) fromP(A4,,)?
More generally letd,, be an increasing sequence

AL C Ay C ...
and define

A= nh—>n;o A, = G A,
1

DefineB,, forn > 1
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B,, for n > 1 are disjoint events and
Ja=Us
3 =1
Ua-Us
i= i=1

p<[j AZ) :p@ BZ.)

= PB(B)

= Jm U5
=t U
- Jin P
Thus
]P’( lim An) = lim P(A,)

n—oo n—oo

Probability is a continuous set function. Thus

P(extinction ever occuis= lim P(A,)

= lim P(X, =0)
=q, Say

NoteP(X,, =0),n =1,2,3,... is an increasing sequence so limit exists. But
P(X,, =0) = F,(0) F, isthe p.g.f ofX,,

So
g = lim F,(0)

n— 00

Also

Flq)=F (nlggo Fn(O))
= nli—>120 F (F,(0)) Since F is continuous
= lim F,1.1(0)
ThusF(q) =¢q

“g” is called theExtinction Probability
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Alternative Derivation

q= ZP(Xl = k) P(extinction| X1 = k)
k

=> P(Xy=k)¢"
= F(q)

41

Theorem 5.9. The probability of extinctiony, is the smallest positive root of the equa-

tion F(¢) = g. m is the mean of the offspring distribution.

If m < 1theng =1, while ifm > 1thery <1

Proof.

Fly=1 m=)Y kf,= limlF/(z)
0

F'(z) = Zj(j —1)2772in0 < z < 1Sincefy + f1 < 1AIso F(0) = fo >0
Jj==z

Thus ifm < 1, there does not existsgac (0, 1) with F(q) = ¢. If m > 1 then leta

be the smallest positive root &f(z) = z thena < 1. Further,

F(0) < Fla) =«
F(F(0)) <Fla)=«a
F,(0) <« Vn >1
g= lim F,(0)<0
=« Sinceq is aroot of F'(z2) = z
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5.5 Random Walks

Let X, Xo,... bei.i.d.rvs. Let
Sn=58+X1+Xo+- -+ X, Where, usuallys, = 0

ThensS,, (n =0,1,2,... is a 1 dimensionadRandom Walk

We shall assume

{1, with probabilityp (5.2)

—1, with probability ¢
This is a simple random walk. f = ¢ = % then the random walk is callesymmetric

Example (Gambler's Ruin). You have an initial fortune off and | have an initial
fortune of B. We toss coins repeatedly | win with probabiljtyand you win with
probability g. What is the probability that | bankrupt you before you bankrupt me?
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Seta = A + B andz = B Stop a random walk starting atwhen it hits0 or a.

Letp, be the probability that the random walk hitbefore it hits0, starting from
z. Letq, be the probability that the random walk hitsbefore it hitsa, starting from
z. After the first step the gambler’s fortune is either 1 or z + 1 with probp andg
respectively. From the law of total probability.

Pz = QqPz—1 + PPz+1 0<z<a
Alsop, = 0 andp, = 1. Must solvept? — t + g = 0.

1+ y1—-4pg 1+£/1-2p

2p 2p

—10r
p

t
General Solution fop # ¢ is

z
pZZA—I—B(q) A+ B =0A=
P

and so

To calculatey,, observe that this is the same problem with, = replaced by, ¢, a — =

respectively. Thus . .
ROEOI

4> = a
o)
p
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or
a—z

¢ = ifp=gq
Thusg, + p, = 1 and so on, as we expected, the game ends with probability one.

P(hits 0 beforea) = ¢,
)" - @y
QJ(lpﬁp%q

g = (%) -

What happens ag — co?

P( paths hit0 ever) = U path hits0 before it hitsa

a=z+1
P(hits0 even = lim P(hits0 beforea)
= lim ¢,
q
- () P=q
p

LetG be the ultimate gain or loss.

o_fa-= W!th probab!I!typz (5.3)
—z, with probability ¢,
EG) < L= Tr#a (5.4)
0, ifp=gq

Fair game remains faif the coin is fair then then games based on it have expected
reward0.

Duration of a Game Let D, be the expected time until the random walk lfits
or a, starting fromz. Is D, finite? D, is bounded above by the mean of geometric
random variables (number of window’s of size a before a window withtalls or
—1’s). HenceD, is finite. Consider the first step. Then

D,=1+pD,y1+qD,1
E[duratior} = E[E[duration| first step)
= p (E[duration| first step up) + ¢ (E[duration| first step dowf)
=p(l+D.1)+q(1+ D, 1)
Equation holds fof < z < a with Dy = D, = 0. Let’s try for a particular solution
D, =0C,
C.,=Cpz+1)+Cy(z—1)+1

1
C=—— forp #q
qa—p
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Consider the homogeneous relation

pr—ttqg=0 tp=1 to=1
p
General Solution fop # ¢ is
p q=p
Substitutez = 0, a to getA and B
()
z a P
D. = pP#q

q-p q-Dpq_ (g)“
p
If p = ¢ then a particular solution isz2. General solution
D,— 2>+ A+ Bz
Substituting the boundary conditions given.,
D, =z(a-2) p=q

Example. Initial Capital.

p q z | a | P(ruin) | E[gain | E[duration
05| 0.5 | 90| 100 0.1 0 900
045 055| 9 | 10 0.21 -11 11
0.45| 0.55| 90 | 100 0.87 =77 766

Stop the random walk when it hiiisor a.
We havebsorptiorat 0 or a. Let

U.., = P(rw. hits O at time n—starts a) z
Uz,nJrl = pUerl,n + qszl,n 0<z<a

UO,n:Ua,nzo nZO
Ua70:1UZ70:0 OSZSCL

oo
LetU, =Y U.ns"

n=0

Now multiply bys"** and add forn = 0,1,2. ..

U.(s) = psU,+1(s) + qsU,_1(s)
WhereUy(s) = 1andU,(s) =0

Look for a solution

45
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Must satisfy
A(s) = ps (A(9)* +gs

1+ /1 — 4pgs?
i), Ao(s) = — Vo T

2ps

Two Roots,

Every Solution of the form
Us(s) = A(s) (A1(s))” + B(s) (A2(s))”
Substitutd/y(s) = 1 andU,(s) = 0.A(s) + B(s) = 1 and

A(s) (Ma(s5))" + B(s) (Xa(s))" =0

(A(5))" (Aa(5))” = (Ma(s)” (Aa(s))”
(Ar(5))" = (Aa(s))"

But A1 (s)Aa(s) =  recall quadratic
p

g\ (M(s)" 7 —(Aa(s)" "
Uz s)=1|— a a
= (5) St —oa
Same method give generating function for absorption probabilities at the other barrier.

Generating function for the duration of the game is the sum of these two generating
functions.

U.(s) =




Chapter 6

Continuous Random Variables

In this chapter we drop the assumption tRaid finite or countable. Assume we are
given a probabilityp on some subset @1.

For example, spin a pointer, and lete Q) give the position at which it stops, with
ND=w:0<w< 27 Let

P(w € [0,9}):% (0 <6< 2r)

Definition 6.1. A continuous random variabl& is a functionX : 2 — R for which

b
Pla < X(w) <b) = / f(x)dx
Wheref () is a function satisfying
1 f(x) =0
2. fjooj f(z)dz =1
The function f is called thBrobability Density Function

For example, ifX(w) = w given position of the pointer then x is a continuous
random variable with p.d.f

f(m){;w, (0<z<2m) (6.)

0, otherwise

This is an example of a uniformly distributed random variable. On the int@y2i]

a7
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in this case. Intuition about probability density functions is based on the approximate
relation.

T+xdx
P(X € [z,z + zdx]) = / f(z)dz
Proofs however more often use the distribution function
F(z) =P(X < x)

F(z) is increasing inc.

If X is a continuous random variable then
Fo) = [ 1

and soF is continuous and differentiable.

(At any point x where then fundamental theorem of calculus applies).
The distribution function is also defined for a discrete random variable,

Fx)= Y po

w:X (w)<z

and so F is a step function.

In either case

Pa< X <b)=P(X <b)—P(X <a)=F(b) — F(a)
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Example. The exponential distribution. Let
1—e <z<
F(:c)Z{ c Ozx—oo 6.2)

The corresponding pdf is
f(z) = e 0<z<o

this is known as the exponential distribution with parametelf X has this distribu-
tion then

P(X <x+2)

P(X <z)
e—)\(w+z)

PX<z+zX<z)=

6—)\2

_ 67)\1’
=P(X <x)
This is known as the memoryless property of the exponential distribution.

Theorem 6.1. If X is a continuous random variable with pfifz) andh(z) is a contin-
uous strictly increasing function with—!(z) differentiable therh(z) is a continuous
random variable with pdf

fule) = £ (07 (@) L (@)

Proof. The distribution function of.(X) is

P(A(X) < o) = P(X < h™' () = F (b (x)

Sinceh is strictly increasing and’ is the distribution function of X Then.

LB(h(x) <)

is a continuous random variable with pdf as claimfgd Noteusually need to repeat
proof than remember the result. O
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Example. SupposeX ~ UJ0,1] that is it is uniformly distributed o0, 1] Consider
Y =—logx

Thus Y is exponentially distributed.
More generally

Theorem 6.2.LetU ~ U0, 1]. For any continuous distribution function F, the random
variable X defined byX = F~1(u) has distribution functiorf'.

Proof.
P(X <2)=P(F '(u) < )
P(U < F(z))
= F(z) ~ U[0,1]
O
Remark

1. abit more messy for discrete random variables

Let
j—1 J

X=a;it Y p<U<Y p;  U~U1]
=0 =0

2. useful for simulations

6.1 Jointly Distributed Random Variables
For two random variableX andY the joint distribution function is

F(z,y) =P(X <z, Y<y)  F:R*—[0,1]
Let

Fx(z) =P(Xz <x)
=P(X <z,Y <o)
= F(z,00)
= lim F(z,y)

Yy—00
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This is called the marginal distribution of X. Similarly
Fy(-T) = F(OO,y)

X1, Xo, ..., X, are jointly distributed continuous random variables if for acsetR®

P((X1, Xa, ..., Xn) € €) :///( F(x1, .. zn)dzy ... dan

,,,,, xn)EcC

For some function f called the joint probability density function satisfying the obvious
conditions.

1.
flx1,. ... zn)dzy >0

// flxy,. . xn)dey .. .de, =1
R‘n,

Example. (n = 2)

Fa,y) =P(X <z,Y <y)
z Yy
:/ f(u,v)dudv
O%F(x,
and sof (z,y) = 6x(8yy)

Theorem 6.3. provided defined afz,y). If X andy are jointly continuous random
variables then they are individually continuous.

Proof. Since X and Y are jointly continuous random variables

// f(z,y)dzdy

= fafx(z)dx

P(XcA)=PX €AY € (—o00,+x))

wherefx (z / f(z,y)d

is the pdf of X O

Jointly continuous random variablésandY arelndependenif

f(z,y) = fx(z)fy(y)
ThenP(X € A,Y € B) =P(X € A)P(Y € B)

Similarly jointly continuous random variable§,, ..., X,, are independent if

fl‘17..., HfX xz
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Wherefx, (z;) are the pdf's of the individual random variables.

Example. Two pointsX andY are tossed at random and independently onto a line
segment of length L. What is the probability that:

X —Y|<1?

Suppose that “at random” means uniformly so that

faw)=75  wyel I
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Desired probability

/ /A f(a, y)dudy

area of A
L2
B ? — 2%(L —1)?
i a—
2Ll —I?

Example (Buffon’s Needle Problem).A needle of length | is tossed at random onto a
floor marked with parallel lines a distance L apar L. What is the probability that
the needle intersects one of the parallel lines.

Leté € [0, 27] be the angle between the needle and the parallel lines andbet
the distance from the bottom of the needle to the line closest to it. It is reasonable to
suppose that X is distributddniformly.

X ~U0,L]  ©~U0,n)

and X and© are independent. Thus

f(afﬁ):liogszand()gegﬂ
s
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The needle intersects the line if and onlXif< sin § The event A

://A f(z,0)dxdo

_ Z/Tr sin@de
0 L
_ 2
L
Definition 6.2. Theexpectationor mean of a continuous random variab¥eis

provided not both of *°_ z f(x)dx and f_ooo xf(x)dx are infinite
Example (Normal Distribution). Let

1 —(z—p)?
e 202 —o<zr<o

fz) =

2mo

This is non-negative for it to be a pdf we also need to check that

/_O:o flz)dz =1

r—

Make the substitution = *>#. Then

I
[\
>l"_‘
I
2 8
I
2 8

[y

i
_:I\J

G

3

oW

<

|
-
™)
M
N
g
Y
>

Thereforel = 1. A random variable with the pdf f(x) given above haslarmal
distributionwith parameterg: and o we write this as

X ~ N[/j" 02]
The Expectation is
1 C —@e-w?
E[X] = re 202 dx
X] V2mo [oo

1 > —(z—p)? 1 X —@-w?
" Voro / (= e de + V2o / pexrdw.
—0 —00



6.1. JOINTLY DISTRIBUTED RANDOM VARIABLES 55

The first term is convergent and equals zero by symmetry, so that

EX]=0+pu
=

Theorem 6.4. If X is a continuous random variable then,

E[X] :/OOOIP(sz)dx—/OOO]P’(Xg ) da

Proof.
L= [ el
/ / Iy > 2l (y)dyde
_ /O /0 df
= [ wstay
Similarly /0 TP(X < —a)dz = [ Oooyf(y)dy
result follows. =

Note This holds for discrete random variables and is useful as a general way of
finding the expectation whether the random variable is discrete or continuous.
If X takes valuesinthe séft, 1,...,] Theorem states

ZIP’X>n

n=0

and a direct proof follows

o0

ZIP’X>n ilm>n P(X =m)
0m=0

<ilm>n> (X =m)

mP(X =m)

pnqg

0

3
]

tnqg

3
I
o

Theorem 6.5. Let X be a continuous random variable with pffz) and leth(z) be
a continuous real-valued function. Then provided
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Proof.

/O TR((X) 2 ) dy

/ / x)dx | dy

0 z)>0

/ / Ih(z) > y]f(x)dzdy
0 h(z)>0

/a::h(z) /Oh(m)zo dy] f(z)dx

- / h(z)f (x)dy
z:h(x)>0

Similarly /0 T P(X) < —y) = — / o @

So the result follows from the last theorem. O

Definition 6.3. The variance of a continuous random variat{eis
Var X = E[(X — E[X])?]

Note The properties of expectation and variance are the same for discrete and contin-
uous random variables just replage with [ in the proofs.

Example.

Var X = E[X?] - E[X]?
_ /: 22 f (x)dw — (/_O; xf(:v)dx)z

Example. SupposeX ~ N|u,o?] Letz = % then

]P’(Z<z)IP’<X’u§z)

o
=PX <pu+oz)
ptoz o2
= ! e (2«72/) dx
o 2mo

xT—p 1 u?
Let = — d
(u . > /Oo ez du

= ®(2) The distribution function of & (0, 1) random variable
Z ~ N(0,1)
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What is the variance of ?

Var X = E[Z?%] — 2 Last term is zero
1

o0 2
= /ze2dz

[ 1 _z2r° +/°° =24

e 2 z
\/ — 00 — 00
0 =

Var X =1

Variance ofX ?

X=p+oz
ThusE[X] = u we know that already
Var X = o2 Var Z
Var X = o?
X ~ (p,0°)

6.2 Transformation of Random Variables

SupposeX, Xo, ..., X, have joint pdff(z1,...,z,) let

Y1 = 7“1(X1,X2,...7Xn)
Y2 = T’Q(Xl,XQ,.. ,Xn)

Yn = rn(Xl»XQv oo 7Xn)

Let R € R™ be such that
]P)((XlaX27' s 7X7L) € R) =1

Let S be the image of? under the above transformation suppose the transformation
from R to S'is 1-1 (bijective).
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Then3 inverse functions

T = 81(y17y27"'7yn)
T2 = 52(y17y23"'7yn)~-~
Tp = Sn(yhy% s 7yn)

Assume thalg—;f‘ exists and is continuous at every pofpt, yo, ..., y») in S
951 9s1
dy1 """ Oyn
J=|1 o (6.3)
Osn Osn
oY1 e OYn
fACR

]P’((Xl,...,Xn)GA)[l]:/---/f(xl,...7xn)dx1...dxn

A

:/.../f(sl,...,sn)\J|dy1...dyn

B
Where B is the image of A
=P((Yy,...,Y,) € B)[2]
Since transformation is 1-1 then [1],[2] are the same
Thus the density foy,...,Y,, is

g((y17y27' "ayn) = f(51(y13y27~-'ayn)a"'75n(y1ay27"'7yn)) ‘J|

y1’y27"')y’n E S
= 0 otherwise.

Example (density of products and quotients).Suppose thatX, Y) has density

doy, for0<z<1,0<y<1
f(x,y>:{ Y Y (6.4)

0, Otherwise.

LetU = £ andV = XY
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g

T = \/uv Y=

oz 1f 0w _1 [u
ou 2V u o 2\
oy _—1vd Oy _ 1
ou 2 b v 2yuv’

— 9! if (u,v) € D
v
=0 Otherwise

NoteU andV are NOT independent
u
g(u,v) = 251[(1;,1)) € D]

not product of the two identities.

When the transformations are linear things are simpler still. A& then x n
invertible matrix.

Y1 X1
L] =Al
Ya Xn
|J| = det A=! = det A™*
Then the pdfofY7,...,Y,,) is

1

i) = ——f(ATE
g(yi,--m) detAf(

9)

Example. SupposeX;, X, have the pdff (z1,z2). Calculate the pdf oX; + X5.
LetY = X; + XoandZ = X5. ThenX; =Y — Zand X, = Z.

(1 -1
A (0 1) (6.5)
1
—1 _
det A _17detA

Then
g(yvz) = f(xlaxQ) = f(y _sz)
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joint distributions ofY” and X .
Marginal density of Y is

g(y)=/ fly— 2z 2)dz —0o<y< o
org(y) = / f(z,y — z)dz By change of variable

If X; and X, are independent, with pgf’s; and f> then
f(@1,22) = f(z1)f(22)
andtheny(s) = [ (- 2)/()dz

- the convolution off; and f,

For the pdf f(x)z is a mode iff () > f(z)Vz

% is a median if )
[m f(x)dx 7/&; flz)dx = %

For a discrete random variable; is a median if

1 1
P(ng;)ziorP(Xzi;)zi
If Xq,...,X, is asample from the distribution then recall that the sample mean is
1 n
Iy
n 1
LetYs,...,Y, (thestatistic$ be the values oK, ..., X, arranged in increasing

order. Then the sample median}fs% if nis odd or any value in

{Y%,Y%} if nis even
If Y, = maxXy,..., X, and X4, ..., X, are iidrv’s with distributionF" and den-
sity f then,
= (F(y)"
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Thus the density df;, is

o(y) = % (F(y))"

=n(F)"" f(y)
SimilarlyY; = minXy,..., X, andis

=1-(1-F(y)"

Then the density df; is

=n(1-F(y)" " fly)

What about the joint density af, Y,,?

Gy, yn) =PY1 <91, Y0 < yn)
= P(Kl S yn) - ]P)(}/n S y'qul 21)
=P, <yn) —Ply1 < X1 <yn,y1 < Xo<Yp,..., 01 < Xy, <)

= (F(yn)" = (F(yn) — F(11))"
Thus the pdf o¥1, Y, is
62
10y,

=n(n—1) (Flyn) = F(y1)" " f(y2) £ (yn) —00 <y <yp <0
=0 otherwise

9(y1,yn) G(y1,Yn)

What happens if the mapping is not 1-X?= f(z) and|X| = g(z)?

b

P(\Xlé(avb))Z/ (f(@) + f(=x))dz g(z) = f(z) + f(—2)

a

SupposeXy, ..., X, are iidrv’'s. What is the pdf of1, . .., Y, the order statistics?

nlf(y) ... f(yn), y1 <2< <y
yeees = ) 6.6
9w yn) {0, Otherwise (6:6)
Example. SupposeXy, ..., X,, are iidrv's exponentially distributed with parameter
A. Let
z1 = Yl
2=Y2-Y1
Zn = Yn - Ynfl

WhereYy,...,Y,, are the order statistics ok, ..., X,,. What is the distribution of
thez's?
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Z =AY
Where
1 0 0 00
-1 1 0 00
4=10 -1 1 0 0 (6.7)
0 0 -1 1
det(A) =1
h(Zl, * 7Zn) = g(yl?' i 7y'I'L)
=nlf(y1)--. fyn)
=nl\te ML e AVn
= nI\"e~ Myt Fun)
— n!)\nef)\(zl2zQ+~-+nzn)
n
= [ pie s
=1
Thush(z, ..., z,) is expressed as the product of n density functions and
Zyy1—i ~ exp(Ai)
exponentially distributed with parametai, with z1, . .., z,, independent.
Example. Let X andY be independen¥ (0.1) random variables. Let
D=R*=X>+Y,
thentan © = ¥ then
d = z? + y? andf = arctan (Q)
x
2z 2y
=] = | =2 (6.8)

—
+
&
8l
~—
|
—
+
—~
8l
~—
|
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1 =2 1 2
= ——e 2 —e 2
V2T V2T

:%e

f(z,y)

Thus )
;d
g(d,0) = Ee

But this is just the product of the densities

0<d

IN
8

o
IN
SS
IN
Do
3

ThenD and© are independentd ~exponentially mean 2 ~ U0, 2x].

Notethis is useful for the simulations of the normal random variable.

We know we can simulat®¥[0, 1] random variable byX = f(U) whenU ~
U|0, 1] but this is difficult forN [0, 1] random variable since

+x 2
F(m):@(m):[ \/12?6

is difficult.
Let U; and U be independent UJ0,1]. Let R? = —2logU, so thatR? is
exponential with mean B = 2xU;. Then® ~ U|0, 27]. Now let

X = Rcos© = \/—2log U cos(2nUs)
Y = Rsin® = y/—2log Us sin(27U7)

ThenX andY are independend |0, 1] random variables.

Example (Bertrand’s Paradox). Calculate the probability that a “random chord” of
a circle of radius 1 has length greater thgf3. The length of the side of an inscribed
equilateral triangle.

There are at least 3 interpretations of a random chord.

(1) The ends are independently and uniformly distributed over the circumference.

answer= %
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(2)The chord is perpendicular to a given diameter and the point of intersection is
uniformly distributed over the diameter.

o+ (9) -
answer= 1

(3) The foot of the perpendicular to the chord from the centre of the circle is uni-
formly distributed over the diameter of the interior circle.

interior circle has radiu&;.

71'
answer = = -

6.3 Moment Generating Functions

If X is a continuous random variable then the analogue of the pgf is the moment gen-

erating function defined by
m(0) = E[e?]

for thosef such thatn(0) is finite

m(0) = /00 % f(z)dx

— 00

wheref(z) is the pdf ofX.
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Theorem 6.6. The moment generating function determines the distributioXi,qdro-
videdm(6) is finite for some interval containing the origin.

Proof. Not proved. O

Theorem 6.7. If X andY are independent random variables with moment generating
functionm, () andm,(#) thenX + Y has the moment generating function

My (0) = My (0) x my (0)
Proof.
E {69($+y):| _ E[eezee)y]
= E[e"] E[e"]
= mq(0)my(0)
O

Theorem 6.8. Thert moment ofX ie the expected value 6", E[X"], is the coeffi-
cient of - of the series expansion af?).

Proof. Sketch of....

02
e"X:1+9X+§X2+...

2
E[e”*] = 1+ 0E[X] + %E[Xz} -
O

Example. Recall X has an exponential distribution, parametgiif it has a density
Aer for 0 < z < co.

E[egx] :/ P e da

0

:/\/ e~ (A=,
0

A

=31_9 =m(0) forg < A

Thus

Var X = E[X?] - E[X]?
2 1
A2 a2
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Example. SupposeXy, ..., X, are iidrvs each exponentially distributed with param-
eter\.
Claim: X;,..., X,, has agamma distributior;(n, A) with parameters:, A. With
density
/\ne—Amxn—l
(n—1)!
we can check that this is a density by integrating it by parts and show that it equals 1.

0<x <o

]E[ O(X1++X, )} eexl} 3 ]E[egX“]

E[
IE [69X1

A
-0
Suppose that” ~ T'(n, \).

fo%e) n,—Ax,.n—1
E[eay] z/ egz/\eixdx
0 (n—1)!

:<Ai0> / - 6)<n—A1>.9) s

Hence claim, since moment generating function characterizes distribution.

Example (Normal Distribution). X ~ N[0, 1]

OX / ( 12;5 )2 dx
27T0'
1

\/70' exp |:20'2

{1 ((x — p— 05%)? 2#0290204)} dzx

(22 — 2zp + p? 2902:0)] dx

\/ U
_eorrr [T L L i 002)2] 4
= e . o exp 20_2 X 12 g €Z

The integral equals 1 are it is the density®fu + 002, 02

2
= 6M0+92%

Which is the moment generating functiondfu, o] random variable.

Theorem 6.9. SupposeX, Y are independenX ~ N|ui,o?] andY ~ Nus, 03]
then

1.
X +Y ~ N + pa, 07 + 03]

aX ~ Nlap; + a*0?]



6.4. CENTRAL LIMIT THEOREM
Proof. 1.

]E[EG(X—&-Y)} _ E[eex] E[eey]
_ m0+5030%) (n20+ 50367)

— e(ﬂ1+/i2)9+%(‘7%+0§)92
which is the moment generating function for

Nlp + p2, 07 + 03]

E[ee(axq _ E[e(ea)x}
= eﬂl(ea)+%g%(0a)2

— e(uu1)0+%a20f92
which is the moment generating function of

Nfaps, a%?)

6.4 Central Limit Theorem

X1,..., X, iidrv’'s, mean0 and variance?. X; has density

Var X; = o
X, +---+ X, has Variance

Var X; + - + X,, = no?

67
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Ht4£Xn has Variance

Xit++Xp ;
NG has Variance

Theorem 6.10.Let X1, ..., X,, beiidrv’s withE[X;] = z andVar X; = 02 < cc.
Sn=>_X;
1

ThenV(a, b) such that-co < a <b < 0

S, —no b1 e
Im Pla< ———<b| = e 2 dz
n—00 ( T ooyn T ) /a Ver

Which is the pdf of a[0, 1] random variable.
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Proof. Sketch of proof.....
WLOG takep = 0 ando? = 1. we can replace; by % mgf of X; is

my,(0) =E [66Xi]

02 i 0P
= 1+ 0B[X:] + SE[X?] + rE[X7] + ..
6> 63
:1+5+§E[Xf’] +...
The mgf ofs—\/%
E[eeiﬁﬁ} :E[E\%(X1+"'+X")}
= E[e%xl} ...E{eﬁ "}
= E{e ﬁ&r
_ VY
= | mx, \/ﬁ
< 6 9%ﬂxﬂ>” o
=1+ =4+ ——— =— €2 asn — 0
2n 3inz
Which is the mgf ofN[0, 1] random variable. O

Noteif .S,, ~ Bin[n,p] X; = 1 with probability p and= 0 with probability (1 —p).
Then
Sn — np
N
This is called the normal approximation the the binomial distribution. Applies-as
oo with p constant. Earlier we discussed the Poisson approximation to the binomial.
which applies whem — oo andnp is constant.

~ NJ[0,1]

Example. There are two competing airlines. n passengers each select 1 of the 2 plans
at random. Number of passengers in plane one

1
S inln, 2]
Suppose each plane has s seats and let
f(s) =P(S < s)
S —np
~nl0,1
g o
S—in s—in
f(s) = P( =< 2 )
AU VD
25 —n
=1-90
*7)

therefore ifn. = 1000 ands = 537 then f(s) = 0.01. Planes hold 1074 seats only 74
in excess.
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Example. An unknown fraction of the electorate, p, vote labour. It is desired to find p
within an error no exceeding 0.005. How large should the sample be.

Let the fraction of labour votes in the samplebeWe can never be certain (with-
out complete enumeration), th%ﬁ— p/‘ < 0.005. Instead choose n so that the event

‘p — p/’ < 0.005 have probability> 0.95.

]P’(’p _ p" < 0.005) = P(|S,, — np| < 0.005n)

<|Sn — np| 0.005\/ﬁ>
NG Vn

Choose n such that the probability3s0.95.

196 1,
e75 dr = 20(1.96) — 1
/—1.96 V2T

We must choose n so that

0.005/n > 1.06
Jn

But we don't knowp. Butpg < 1 with the worst casg = ¢ = 3

2
1967 1 40,000

>
"= 0.0052 4

If we replace 0.005 by 0.01 the> 10, 000 will be sufficient. And is we replace 0.005
by 0.045 them > 475 will suffice.

Note Answer does not depend upon the total population.
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6.5 Multivariate normal distribution

Letxy,..., X, beiid N[0, 1] random variables with joint densig(z1, . .. z,)

Tl Z
g(ml,...xn):H e?

Write

— —

and letZ = i + AX whereA is an invertible matriX# = A~'(Z — j7)). Density ofZ

f(z1yey20) = a 1)n 5 1Ae%(A*I(zfﬁ))T(Afl(zfﬁ))
)2 de
= %e%(f—ﬁ)%*l(z—m
(2m) |33

whereX AAT. This is the multivariate normal density
7~ MVNIi, Y]
Cov(2i, 2j) = E[(2; — ps) (25 — py)]
But this is the(i, ) entry of
E[(Z - @)z - 7)7] = E[(AX)(4X)"]
= AE[XXT] AT
= ATAT = AAT = ¥ Covariance matrix

If the covariance matrix of the MVN distribution is diagonal, then the components of
the random vectot are independent since

w 1 —1(ziom)?
f(zl,...,zn):il:[lmﬁ)éaiez( = )
Where
o? 0 0
so | Ug 0
0 0 o2

Not necessarily true if the distribution is no MVN recall sheet 2 question 9.
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Example (bivariate normal).

f(x1,22) =

2
xrp — Xro — Ir1 —
2p( 1 M1)<2 M2>+( 1 Ml) H
g1 g9 g1
01,00 < 0and—-1 < p < +1. Joint distribution of abivariate normal random

variable

Example. An example with
g1 1 of  pojloy!
1—p? \poy'loyt o}

Y — O’% pPo102
po102 o3

E[X;] = p; andVar X; = 2. Cov(X1, X2) = 0102p.

COU(Xl, XQ)

Correlation(Xy, X3) =
0109
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