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Chapter 1

Basic Concepts

1.1 Sample Space

Suppose we have an experiment with a setΩ of outcomes. ThenΩ is called the sample
space. A potential outcomeω ∈ Ω is called a sample point.

For instance, if the experiment is tossing coins, thenΩ = {H,T}, or if the experi-
ment was tossing two dice, thenΩ = {(i, j) : i, j ∈ {1, . . . , 6}}.

A subsetA of Ω is called an event. An eventA occurs is when the experiment is
performed, the outcomeω ∈ Ω satisfiesω ∈ A. For the coin-tossing experiment, then
the event of a head appearing isA = {H} and for the two dice, the event “rolling a
four” would beA = {(1, 3), (2, 2), (3, 1)}.

1.2 Classical Probability

If Ω is finite, Ω = {ω1, . . . , ωn}, and each of then sample points is “equally likely”
then the probability of eventA occurring is

P(A) =
|A|
|Ω|

Example. Chooser digits from a table of random numbers. Find the probability that
for 0 ≤ k ≤ 9,

1. no digit exceedsk,

2. k is the greatest digit drawn.

Solution. The event that no digit exceedsk is

Ak = {(a1, . . . , ar) : 0 ≤ ai ≤ k, i = 1 . . . r} .

Now |Ak| = (k + 1)r, so thatP(Ak) =
(

k+1
10

)r
.

Let Bk be the event thatk is the greatest digit drawn. ThenBk = Ak \Ak−1. Also
Ak−1 ⊂ Ak, so that|Bk| = (k + 1)r − kr. ThusP(Bk) = (k+1)r−kr

10r

1



2 CHAPTER 1. BASIC CONCEPTS

The problem of the points

Players A and B play a series of games. The winner of a game wins a point. The two
players are equally skillful and the stake will be won by the first player to reach a target.
They are forced to stop when A is within 2 points and B within 3 points. How should
the stake be divided?

Pascal suggested that the following continuations were equally likely

AAAA AAAB AABB ABBB BBBB
AABA ABBA BABB
ABAA ABAB BBAB
BAAA BABA BBBA

BAAB
BBAA

This makes the ratio11 : 5. It was previously thought that the ratio should be6 : 4
on considering termination, but these results are not equally likely.

1.3 Combinatorial Analysis

The fundamental rule is:
Supposer experiments are such that the first may result in any ofn1 possible out-

comes and such that for each of the possible outcomes of the firsti − 1 experiments
there areni possible outcomes to experimenti. Let ai be the outcome of experimenti.
Then there are a total of

∏r
i=1 ni distinctr-tuples(a1, . . . , ar) describing the possible

outcomes of ther experiments.

Proof. Induction.

1.4 Stirling’s Formula

For functionsg(n) andh(n), we say thatg is asymptotically equivalent toh and write
g(n) ∼ h(n) if g(n)

h(n) → 1 asn →∞.

Theorem 1.1 (Stirling’s Formula). Asn →∞,

log
n!√

2πnnne−n
→ 0

and thusn! ∼
√

2πnnne−n.

We first prove the weak form of Stirling’s formula, thatlog(n!) ∼ n log n.

Proof. log n! =
∑n

1 log k. Now∫ n

1

log xdx ≤
n∑
1

log k ≤
∫ n+1

1

log xdx,

and
∫ z

1
logx dx = z log z − z + 1, and so

n log n− n + 1 ≤ log n! ≤ (n + 1) log(n + 1)− n.

Divide by n log n and letn → ∞ to sandwich log n!
n log n between terms that tend to1.

Thereforelog n! ∼ n log n.
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Now we prove the strong form.

Proof. Forx > 0, we have

1− x + x2 − x3 <
1

1 + x
< 1− x + x2.

Now integrate from0 to y to obtain

y − y2/2 + y3/3− y4/4 < log(1 + y) < y − y2/2 + y3/3.

Let hn = log n!en

nn+1/2 . Then1 we obtain

1
12n2

− 1
12n3

≤ hn − hn+1 ≤
1

12n2
+

1
6n3

.

For n ≥ 2, 0 ≤ hn − hn+1 ≤ 1
n2 . Thushn is a decreasing sequence, and0 ≤

h2−hn+1 ≤
∑n

r=2(hr−hr+1) ≤
∑∞

1
1
r2 . Thereforehn is bounded below, decreasing

so is convergent. Let the limit beA. We have obtained

n! ∼ eAnn+1/2e−n.

We need a trick to findA. Let Ir =
∫ π/2

0
sinr θ dθ. We obtain the recurrenceIr =

r−1
r Ir−2 by integrating by parts. ThereforeI2n = (2n)!

(2nn!)2 π/2 andI2n+1 = (2nn!)2

(2n+1)! .
Now In is decreasing, so

1 ≤ I2n

I2n+1
≤ I2n−1

I2n+1
= 1 +

1
2n

→ 1.

But by substituting our formula in, we get that

I2n

I2n+1
∼ π

2
2n + 1

n

2
e2A

→ 2π

e2A
.

Thereforee2A = 2π as required.

1by playing silly buggers withlog 1 + 1
n
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Chapter 2

The Axiomatic Approach

2.1 The Axioms

LetΩ be a sample space. Then probabilityP is a real valued function defined on subsets
of Ω satisfying :-

1. 0 ≤ P(A) ≤ 1 for A ⊂ Ω,

2. P(Ω) = 1,

3. for a finite or infinite sequenceA1, A2, · · · ⊂ Ω of disjoint events,P(∪Ai) =∑
i P(Au).

The numberP(A) is called the probability of eventA.
We can look at some distributions here. Consider an arbitrary finite or countable

Ω = {ω1, ω2, . . . } and an arbitrary collection{p1, p2, . . . } of non-negative numbers
with sum1. If we define

P(A) =
∑

i:ωi∈A

pi,

it is easy to see that this function satisfies the axioms. The numbersp1, p2, . . . are
called a probability distribution. IfΩ is finite withn elements, and ifp1 = p2 = · · · =
pn = 1

n we recover the classical definition of probability.
Another example would be to letΩ = {0, 1, . . . } and attach to outcomer the

probability pr = e−λ λr

r! for someλ > 0. This is a distribution (as may be easily
verified), and is called the Poisson distribution with parameterλ.

Theorem 2.1 (Properties ofP). A probabilityP satisfies

1. P(Ac) = 1− P(A),

2. P(∅) = 0,

3. if A ⊂ B thenP(A) ≤ P(B),

4. P(A ∪B) = P(A) + P(B)− P(A ∩B).

5



6 CHAPTER 2. THE AXIOMATIC APPROACH

Proof. Note thatΩ = A∪Ac, andA∩Ac = ∅. Thus1 = P(Ω) = P(A)+P(Ac). Now
we can use this to obtainP(∅) = 1− P(∅c) = 0. If A ⊂ B, write B = A ∪ (B ∩Ac),
so thatP(B) = P(A) + P(B ∩Ac) ≥ P(A). Finally, writeA ∪ B = A ∪ (B ∩ Ac)
andB = (B ∩ A) ∪ (B ∩ Ac). ThenP(A ∪B) = P(A) + P(B ∩Ac) andP(B) =
P(B ∩A) + P(B ∩Ac), which gives the result.

Theorem 2.2 (Boole’s Inequality). For anyA1, A2, · · · ⊂ Ω,

P

(
n⋃
1

Ai

)
≤

n∑
i

P(Ai)

P

(∞⋃
1

Ai

)
≤

∞∑
i

P(Ai)

Proof. Let B1 = A1 and then inductively letBi = Ai \
⋃i−1

1 Bk. Thus theBi’s are
disjoint and

⋃
i Bi =

⋃
i Ai. Therefore

P

(⋃
i

Ai

)
= P

(⋃
i

Bi

)
=
∑

i

P(Bi)

≤
∑

i

P(Ai) asBi ⊂ Ai.

Theorem 2.3 (Inclusion-Exclusion Formula).

P

(
n⋃
1

Ai

)
=

∑
S⊂{1,...,n}

S 6=∅

(−1)|S|−1P

⋂
j∈S

Aj

 .

Proof. We know thatP(A1 ∪A2) = P(A1) + P(A2) − P(A1 ∩A2). Thus the result
is true forn = 2. We also have that

P(A1 ∪ · · · ∪An) = P(A1 ∪ · · · ∪An−1) + P(An)− P((A1 ∪ · · · ∪An−1) ∩An) .

But by distributivity, we have

P

(
n⋃
i

Ai

)
= P

(
n−1⋃

1

Ai

)
+ P(An)− P

(
n−1⋃

1

(Ai ∩An)

)
.

Application of the inductive hypothesis yields the result.

Corollary (Bonferroni Inequalities).

∑
S⊂{1,...,r}

S 6=∅

(−1)|S|−1P

⋂
j∈S

Aj

≤
or
≥

P

(
n⋃
1

Ai

)

according asr is even or odd. Or in other words, if the inclusion-exclusion formula is
truncated, the error has the sign of the omitted term and is smaller in absolute value.
Note that the caser = 1 is Boole’s inequality.
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Proof. The result is true forn = 2. If true for n− 1, then it is true forn and1 ≤ r ≤
n − 1 by the inductive step above, which expresses an-union in terms of twon − 1
unions. It is true forr = n by the inclusion-exclusion formula.

Example (Derangements).After a dinner, then guests take coats at random from a
pile. Find the probability that at least one guest has the right coat.

Solution. Let Ak be the event that guestk has his1 own coat.
We wantP(

⋃n
i=1 Ai). Now,

P(Ai1 ∩ · · · ∩Air ) =
(n− r)!

n!
,

by counting the number of ways of matching guests and coats afteri1, . . . , ir have
taken theirs. Thus∑

i1<···<ir

P(Ai1 ∩ · · · ∩Air
) =

(
n

r

)
(n− r)!

n!
=

1
r!

,

and the required probability is

P

(
n⋃

i=1

Ai

)
= 1− 1

2!
+

1
3!

+ · · ·+ (−1)n−1

n!
,

which tends to1− e−1 asn →∞.

Furthermore, letPm(n) be the probability that exactlym guests take the right coat.
ThenP0(n) → e−1 andn! P0(n) is the number of derangements ofn objects. There-
fore

Pm(n) =
(

n

m

)
1× P0(n−m)× (n−m)!

n!

=
P0(n−m)

m!
→ e−1

m!
asn →∞.

2.2 Independence

Definition 2.1. Two eventsA andB are said to be independent if

P(A ∩B) = P(A) P(B) .

More generally, a collection of eventsAi, i ∈ I are independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai)

for all finite subsetsJ ⊂ I.

Example. Two fair dice are thrown. LetA1 be the event that the first die shows an odd
number. LetA2 be the event that the second die shows an odd number and finally let
A3 be the event that the sum of the two numbers is odd. AreA1 andA2 independent?
AreA1 andA3 independent? AreA1, A2 andA3 independent?

1I’m not being sexist, merely a lazy typist. Sex will be assigned at random...
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Solution. We first calculate the probabilities of the eventsA1, A2, A3, A1∩A2, A1∩A3

andA1 ∩A2 ∩A3.

Event Probability

A1
18
36 = 1

2

A2 As above,12

A3
6×3
36 = 1

2

A1 ∩A2
3×3
36 = 1

4

A1 ∩A3
3×3
36 = 1

4

A1 ∩A2 ∩A3 0

Thus by a series of multiplications, we can see thatA1 andA2 are independent,A1

andA3 are independent (alsoA2 andA3), but thatA1, A2 andA3 arenot independent.

Now we wish to state what we mean by “2 independent experiments”2. Consider
Ω1 = {α1, . . . } andΩ2 = {β1, . . . }with associated probability distributions{p1, . . . }
and {q1, . . . }. Then, by “2 independent experiments”, we mean the sample space
Ω1 × Ω2 with probability distributionP((αi, βj)) = piqj .

Now, supposeA ⊂ Ω1 andB ⊂ Ω2. The eventA can be interpreted as an event in
Ω1 × Ω2, namelyA× Ω2, and similarly forB. Then

P(A ∩B) =
∑

αi∈A
βj∈B

piqj =
∑

αi∈A

pi

∑
βj∈B

qj = P(A) P(B) ,

which is why they are called “independent” experiments. The obvious generalisation
to n experiments can be made, but for an infinite sequence of experiments we mean a
sample spaceΩ1 × Ω2 × . . . satisfying the appropriate formula∀n ∈ N.

You might like to find the probability thatn independent tosses of a biased coin
with the probability of headsp results in a total ofr heads.

2.3 Distributions

The binomial distribution with parametersn andp, 0 ≤ p ≤ 1 hasΩ = {0, . . . , n} and
probabilitiespi =

(
n
i

)
pi(1− p)n−i.

Theorem 2.4 (Poisson approximation to binomial).If n → ∞, p → 0 with np = λ
held fixed, then (

n

r

)
pr(1− p)n−r → e−λ λr

r!
.

2or more generally,n.
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Proof. (
n

r

)
pr(1− p)n−r =

n(n− 1) . . . (n− r + 1)
r!

pr(1− p)n−r

=
n

n

n− 1
n

. . .
n− r + 1

n

(np)r

r!
(1− p)n−r

=
r∏

i=1

(
n− i + 1

n

)
λr

r!

(
1− λ

n

)n(
1− λ

n

)−r

→ 1× λr

r!
× e−λ × 1

= e−λ λr

r!
.

Suppose an infinite sequence of independent trials is to be performed. Each trial
results in a success with probabilityp ∈ (0, 1) or a failure with probability1− p. Such
a sequence is called a sequence of Bernoulli trials. The probability that the first success
occurs after exactlyr failures ispr = p(1−p)r. This is thegeometric distributionwith
parameterp. Since

∑∞
0 pr = 1, the probability that all trials result in failure is zero.

2.4 Conditional Probability

Definition 2.2. ProvidedP(B) > 0, we define the conditional probability ofA|B3 to
be

P(A|B) =
P(A ∩B)

P(B)
.

Whenever we writeP(A|B), we assume thatP(B) > 0.

Note that ifA andB are independent thenP(A|B) = P(A).

Theorem 2.5. 1. P(A ∩B) = P(A|B) P(B),

2. P(A ∩B ∩ C) = P(A|B ∩ C) P(B|C) P(C),

3. P(A|B ∩ C) = P(A∩B|C)
P(B|C) ,

4. the functionP(◦|B) restricted to subsets ofB is a probability function onB.

Proof. Results 1 to 3 are immediate from the definition of conditional probability. For
result 4, note thatA∩B ⊂ B, soP(A ∩B) ≤ P(B) and thusP(A|B) ≤ 1. P(B|B) =
1 (obviously), so it just remains to show the last axiom. For disjointAi’s,

P

(⋃
i

Ai

∣∣∣∣B
)

=
P(
⋃

i(Ai ∩B))
P(B)

=
∑

i P(Ai ∩B)
P(B)

=
∑

i

P(Ai|B) , as required.

3read “A givenB”.
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Theorem 2.6 (Law of total probability). LetB1, B2, . . . be a partition ofΩ. Then

P(A) =
∑

i

P(A|Bi) P(Bi) .

Proof. ∑
P(A|Bi) P(Bi) =

∑
P(A ∩Bi)

= P

(⋃
i

A ∩Bi

)
= P(A) , as required.

Example (Gambler’s Ruin). A fair coin is tossed repeatedly. At each toss a gambler
wins£1 if a head shows and loses£1 if tails. He continues playing until his capital
reachesm or he goes broke. Findpx, the probability that he goes broke if his initial
capital is£x.

Solution. Let A be the event that he goes broke before reaching£m, and letH or
T be the outcome of the first toss. We condition on the first toss to getP(A) =
P(A|H) P(H) + P(A|T ) P(T ). But P(A|H) = px+1 andP(A|T ) = px−1. Thus
we obtain the recurrence

px+1 − px = px − px−1.

Note thatpx is linear inx, with p0 = 1, pm = 0. Thuspx = 1− x
m .

Theorem 2.7 (Bayes’ Formula).LetB1, B2, . . . be a partition ofΩ. Then

P(Bi|A) =
P(A|Bi) P(Bi)∑
j P(A|Bj) P(Bj)

.

Proof.

P(Bi|A) =
P(A ∩Bi)

P(A)
=

P(A|Bi) P(Bi)∑
j P(A|Bj) P(Bj)

,

by the law of total probability.



Chapter 3

Random Variables

Let Ω be finite or countable, and letpω = P({ω}) for ω ∈ Ω.

Definition 3.1. A random variableX is a functionX : Ω 7→ R.

Note that “random variable” is a somewhat inaccurate term, a random variable is
neither random nor a variable.

Example. If Ω = {(i, j), 1 ≤ i, j ≤ t}, then we can define random variablesX and
Y byX(i, j) = i + j andY (i, j) = max{i, j}

Let RX be the image ofΩ underX. When the range is finite or countable then the
random variable is said to be discrete.

We writeP(X = xi) for
∑

ω:X(ω)=xi
pω, and forB ⊂ R

P(X ∈ B) =
∑
x∈B

P(X = x) .

Then

(P(X = x) , x ∈ RX)

is the distribution of the random variableX. Note that it is a probability distribution
overRX .

3.1 Expectation

Definition 3.2. The expectation of a random variableX is the number

E[X] =
∑
ω∈Ω

pwX(ω)

provided that this sum converges absolutely.

11
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Note that

E[X] =
∑
ω∈Ω

pwX(ω)

=
∑

x∈RX

∑
ω:X(ω)=x

pωX(ω)

=
∑

x∈RX

x
∑

ω:X(ω)=x

pω

=
∑

x∈RX

xP(X = x) .

Absolute convergence allows the sum to be taken in any order.

If X is a positive random variable and if
∑

ω∈Ω pωX(ω) = ∞ we writeE[X] =
+∞. If

∑
x∈RX
x≥0

xP(X = x) = ∞ and

∑
x∈RX
x<0

xP(X = x) = −∞

thenE[X] is undefined.

Example. If P(X = r) = e−λ λr

r! , thenE[X] = λ.

Solution.

E[X] =
∞∑

r=0

re−λ λr

r!

= λe−λ
∞∑

r=1

λr−1

(r − 1)!
= λe−λeλ = λ

Example. If P(X = r) =
(
n
r

)
pr(1− p)n−r thenE[X] = np.
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Solution.

E[X] =
n∑

r=0

rpr(1− p)n−r

(
n

r

)

=
n∑

r=0

r
n!

r!(n− r)!
pr(1− p)n−r

= n
n∑

r=1

(n− 1)!
(r − 1)!(n− r)!

pr(1− p)n−r

= np
n∑

r=1

(n− 1)!
(r − 1)!(n− r)!

pr−1(1− p)n−r

= np
n−1∑
r=1

(n− 1)!
(r)!(n− r)!

pr(1− p)n−1−r

= np
n−1∑
r=1

(
n− 1

r

)
pr(1− p)n−1−r

= np

For any functionf : R 7→ R the composition off andX defines a new random
variablef andX defines the new random variablef(X) given by

f(X)(w) = f(X(w)).

Example. If a, b andc are constants, thena+ bX and(X− c)2 are random variables
defined by

(a + bX)(w) = a + bX(w) and

(X − c)2(w) = (X(w)− c)2.

Note thatE[X] is a constant.

Theorem 3.1.

1. If X ≥ 0 thenE[X] ≥ 0.

2. If X ≥ 0 andE[X] = 0 thenP(X = 0) = 1.

3. If a andb are constants thenE[a + bX] = a + bE[X].

4. For any random variablesX, Y thenE[X + Y ] = E[X] + E[Y ].

5. E[X] is the constant which minimisesE
[
(X − c)2

]
.

Proof. 1. X ≥ 0 meansXw ≥ 0 ∀ w ∈ Ω

SoE[X] =
∑
ω∈Ω

pωX(ω) ≥ 0

2. If ∃ω ∈ Ω with pω > 0 andX(ω) > 0 thenE[X] > 0, thereforeP(X = 0) = 1.
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3.

E[a + bX] =
∑
ω∈Ω

(a + bX(ω)) pω

= a
∑
ω∈Ω

pω + b
∑
ω∈Ω

pωX(ω)

= a + E[X] .

4. Trivial.

5. Now

E
[
(X − c)2

]
= E

[
(X − E[X] + E[X]− c)2

]
= E

[
[(X − E[X])2

]
+ 2(X − E[X])(E[X]− c) + [(E[X]− c)]2]

= E
[
(X − E[X])2

]
+ 2(E[X]− c)E[(X − E[X])] + (E[X]− c)2

= E
[
(X − E[X])2

]
+ (E[X]− c)2.

This is clearly minimised whenc = E[X].

Theorem 3.2. For any random variablesX1, X2, ...., Xn

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]

Proof.

E

[
n∑

i=1

Xi

]
= E

[
n−1∑
i=1

Xi + Xn

]

= E

[
n−1∑
i=1

Xi

]
+ E[X]

Result follows by induction.

3.2 Variance

VarX = E
[
X2
]
− E[X]2 for Random VariableX

= E[X − E[X]]2 = σ2

Standard Deviation=
√

VarX

Theorem 3.3. Properties of Variance

(i) VarX ≥ 0 if VarX = 0, thenP(X = E[X]) = 1
Proof - from property 1 of expectation
(ii) If a, b constants,Var (a + bX) = b2 VarX
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Proof.

Var a + bX = E[a + bX − a− bE[X]]

= b2E[X − E[X]]

= b2 VarX

(iii) VarX = E
[
X2
]
− E[X]2

Proof.

E[X − E[X]]2 = E
[
X2 − 2XE[X] + (E[X])2

]
= E

[
X2
]
− 2E[X] E[X] + E[X]2

= E
[
X2
]
− (E[X])2

Example. Let X have the geometric distributionP(X = r) = pqr with r = 0, 1, 2...
andp + q = 1. ThenE[X] = q

p andVarX = q
p2 .

Solution.

E[X] =
∞∑

r=0

rpqr = pq
∞∑

r=0

rqr−1

=
1
pq

∞∑
r=0

d

dq
(qr) = pq

d

dq

( 1
1− q

)
= pq(1− q)−2 =

q

p

E
[
X2
]

=
∞∑

r=0

r2p2q2r

= pq

( ∞∑
r=1

r(r + 1)qr−1 −
∞∑

r=1

rqr−1

)
= pq(

2
(1− q)3

− 1
(1− q)2

=
2q

p2
− q

p

VarX = E
[
X2
]
− E[X]2

=
2q

p2
− q

p
− q2

p

=
q

p2

Definition 3.3. The co-variance of random variablesX andY is:

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

The correlation ofX andY is:

Corr(X, Y ) =
Cov(X, Y )√
VarX VarY
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Linear Regression

Theorem 3.4. Var (X + Y ) = VarX + VarY + 2Cov(X, Y )

Proof.

Var (X + Y ) = E
[
(X + Y )2 − E[X]− E[Y ]

]2
= E

[
(X − E[X])2 + (Y − E[Y ])2 + 2(X − E[X])(Y − E[Y ])

]
= VarX + VarY + 2Cov(X, Y )

3.3 Indicator Function

Definition 3.4. The Indicator FunctionI[A] of an eventA ⊂ Ω is the function

I[A](w) =

{
1, if ω ∈ A;
0, if ω /∈ A.

(3.1)

NB thatI[A] is a random variable

1.

E[I[A]] = P(A)

E[I[A]] =
∑
ω∈Ω

pωI[A](w)

= P(A)

2. I[Ac] = 1− I[A]

3. I[A ∩B] = I[A]I[B]

4.

I[A ∪B] = I[A] + I[B]− I[A]I[B]
I[A ∪B](ω) = 1 if ω ∈ A or ω ∈ B

I[A ∪B](ω) = I[A](ω) + I[B](ω)− I[A]I[B](ω) WORKS!

Example. n ≥ couples are arranged randomly around a table such that males and fe-
males alternate. LetN = The number of husbands sitting next to their wives. Calculate
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theE[N ] and theVarN .

N =
n∑

i=1

I[Ai] Ai = event couple i are together

E[N ] = E

[
n∑

i=1

I[Ai]

]

=
n∑

i=1

E[I[Ai]]

=
n∑

i=1

2
n

ThusE[N ] = n
2
n

= 2

E
[
N2
]

= E

( n∑
i=1

I[Ai]

)2


= E

 n∑
i=1

I[Ai]
2

+ 2
∑
i≤j

I[Ai]I[Aj ]


= nE

[
I[Ai]2

]
+ n(n− 1)E[(I[A1]I[A2])]

E
[
I[Ai]2

]
= E[I[Ai]] =

2
n

E[(I[A1]I[A2])] = IE[[A1 ∩B2]] = P(A1 ∩A2)
= P(A1) P(A2|A1)

=
2
n

(
1

n− 1
1

n− 1
− n− 2

n− 1
2

n− 1

)
VarN = E

[
N2
]
− E[N ]2

=
2

n− 1
(1 + 2(n− 2))− 2

=
2(n− 2)
n− 1
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3.4 Inclusion - Exclusion Formula

N⋃
1

Ai =

(
N⋂
1

Ac
i

)c

I

[
N⋃
1

Ai

]
= I

[(
N⋂
1

Ac
i

)c]

= 1− I

[
N⋂
1

Ac
i

]

= 1−
N∏
1

I[Ac
i ]

= 1−
N∏
1

(1− I[Ai])

=
N∑
1

I[Ai]−
∑

i1 ≤ i2I[A1]I[A2]

+ ... + (−1)j+1
∑

i1≤i2...≤ij

I[A1]I[A2]...I[Aj ] + ...

Take Expectation

E

[
N⋃
1

Ai

]
= P

(
N⋃
1

Ai

)

=
N∑
1

P(Ai)−
∑

i1 ≤ i2P(A1 ∩A2)

+ ... + (−1)j+1
∑

i1≤i2...≤ij

P
(
Ai1 ∩Ai2 ∩ .... ∩Aij

)
+ ...

3.5 Independence

Definition 3.5. Discrete random variablesX1, ..., Xn are independent if and only if
for anyx1...xn :

P(X1 = x1, X2 = x2.......Xn = xn) =
N∏
1

P(Xi = xi)

Theorem 3.5 (Preservation of Independence). If
X1, ..., Xn are independent random variables andf1, f2...fn are functionsR → R
thenf1(X1)...fn(Xn) are independent random variables
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Proof.

P(f1(X1) = y1, . . . , fn(Xn) = yn) =
∑

x1:f1(X1)=y1,...
xn:fn(Xn)=yn

P(X1 = x1, . . . , Xn = xn)

=
N∏
1

∑
xi:fi(Xi)=yi

P(Xi = xi)

=
N∏
1

P(fi(Xi) = yi)

Theorem 3.6. If X1.....Xn are independent random variables then:

E

[
N∏
1

Xi

]
=

N∏
1

E[Xi]

NOTEthatE[
∑

Xi] =
∑

E[Xi] without requiring independence.

Proof. Write Ri for RXi the range ofXi

E

[
N∏
1

Xi

]
=
∑

x1∈R1

....
∑

xn∈Rn

x1..xnP(X1 = x1, X2 = x2......., Xn = xn)

=
N∏
1

( ∑
xi∈Ri

P(Xi = xi)

)

=
N∏
1

E[Xi]

Theorem 3.7. If X1, ..., Xn are independent random variables andf1....fn are func-
tion R → R then:

E

[
N∏
1

fi(Xi)

]
=

N∏
1

E[fi(Xi)]

Proof. Obvious from last two theorems!

Theorem 3.8. If X1, ..., Xn are independent random variables then:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

VarXi
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Proof.

Var

(
n∑

i=1

Xi

)
= E

( n∑
i=1

Xi

)2
− E

[
n∑

i=1

Xi

]2

= E

∑
i

X2
i +

∑
i 6=j

XiXj

− E

[
n∑

i=1

Xi

]2

=
∑

i

E
[
X2

i

]
+
∑
i 6=j

E[XiXj ]−
∑

i

E[Xi]
2 −

∑
i 6=j

E[Xi] E[Xj ]

=
∑

i

(
E
[
X2

i

]
− E[Xi]

2
)

=
∑

i

VarXi

Theorem 3.9. If X1, ..., Xn are independent identically distributed random variables
then

Var

(
1
n

n∑
i=1

Xi

)
=

1
n

VarXi

Proof.

Var

(
1
n

n∑
i=1

Xi

)
=

1
n2

VarXi

=
1
n2

n∑
i=1

VarXi

=
1
n

VarXi

Example. Experimental Design. Two rods of unknown lengthsa, b. A rule can
measure the length but with but with error having 0 mean (unbiased) and varianceσ2.
Errors independent from measurement to measurement. To estimatea, b we could take
separate measurementsA,B of each rod.

E[A] = a VarA = σ2

E[B] = b VarB = σ2
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Can we do better? YEP! Measurea + b asX anda− b asY

E[X] = a + b VarX = σ2

E[Y ] = a− b VarY = σ2

E
[
X + Y

2

]
= a

Var
X + Y

2
=

1
2
σ2

E
[
X − Y

2

]
= b

Var
X − Y

2
=

1
2
σ2

So this is better.

Example. Non standard dice. You choose 1 then I choose one. Around this cycle

a → B P(A ≥ B) = 2
3 . So the relation ’A better that B’ is not transitive.
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Chapter 4

Inequalities

4.1 Jensen’s Inequality

A functionf ; (a, b) → R is convex if

f(px + qy) ≤ pf(x) + (1− p)f(y) - ∀x, y ∈ (a, b) - ∀p ∈ (0, 1)

Strictly convex if strict inequality holds whenx 6= y

f is concave if−f is convex. f is strictly concave if−f is strictly convex

23
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Concave

neither concave or convex.
We know that if f is twice differentiable andf

′′
(x) ≥ 0 for x ∈ (a, b) the if f is

convex and strictly convex iff
′′
(x) ≥ 0 forx ∈ (a, b).

Example.

f(x) = − log x

f
′
(x) =

−1
x

f
′′
(x) =

1
x2

≥ 0

f(x) is strictly convex on(0,∞)

Example.

f(x) = −x log x

f
′
(x) = −(1 + logx)

f
′′
(x) =

−1
x
≤ 0

Strictly concave.

Example. f(x = x3 is strictly convex on(0,∞) but not on(−∞,∞)

Theorem 4.1. Letf : (a, b) → R be a convex function. Then:

n∑
i=1

pif(xi) ≥ f

(
n∑

i=1

pixi

)
x1, . . . , Xn ∈ (a, b), p1, . . . , pn ∈ (0, 1) and

∑
pi = 1. Further more if f is strictly

convex then equality holds if and only if all x’s are equal.

E[f(X)] ≥ f(E[X])
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Proof. By induction on nn = 1 nothing to proven = 2 definition of convexity.
Assume results holds up to n-1. Considerx1, ..., xn ∈ (a, b), p1, ..., pn ∈ (0, 1) and∑

pi = 1

For i = 2...n, setp
′

i =
pi

1− pi
, such that

n∑
i=2

p
′

i = 1

Then by the inductive hypothesis twice, first for n-1, then for 2

n∑
1

pifi(xi) = p1f(x1) + (1− p1)
n∑

i=2

p
′

if(xi)

≥ p1f(x1) + (1− p1)f

(
n∑

i=2

p
′

ixi

)

≥ f

(
p1x1 + (1− p1)

n∑
i=2

p
′

ixi

)

= f

(
n∑

i=1

pixi

)

f is strictly convexn ≥ 3 and not all thex′is equal then we assume not all ofx2...xn

are equal. But then

(1− pj)
n∑

i=2

p
′

if(xi) ≥ (1− pj)f

(
n∑

i=2

p
′

ixi

)
So the inequality is strict.

Corollary (AM/GM Inequality). Positive real numbersx1, . . . , xn(
n∏

i=1

xi

) 1
n

≤ 1
n

n∑
i=1

xi

Equality holds if and only ifx1 = x2 = · · · = xn

Proof. Let

P(X = xi) =
1
n

thenf(x) = − log x is a convex function on(0,∞).
So

E[f(x)] ≥ f (E[x]) (Jensen’s Inequality)

−E[log x] ≥ log E[x] [1]

Therefore− 1
n

n∑
1

log xi ≤ − log
1
n

n∑
1

x

(
n∏

i=1

xi

) 1
n

≤ 1
n

n∑
i=1

xi [2]

For strictness since f strictly convex equation holds in [1] and hence [2] if and only if
x1 = x2 = · · · = xn
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If f : (a, b) → R is a convex function then it can be shown that at each point
y ∈ (a, b)∃ a linear functionαy + βyx such that

f(x) ≤ αy + βyx x ∈ (a, b)
f(y) = αy + βyy

If f is differentiable at y then the linear function is the tangentf(y) + (x− y)f
′
(y)

Let y = E[X], α = αy andβ = βy

f (E[X]) = α + βE[X]

So for any random variable X taking values in(a, b)

E[f(X)] ≥ E[α + βX]
= α + βE[X]
= f (E[X])

4.2 Cauchy-Schwarz Inequality

Theorem 4.2. For any random variablesX, Y ,

E[XY ]2 ≤ E
[
X2
]
E
[
Y 2
]

Proof. Fora, b ∈ R Let

LetZ = aX − bY

Then0 ≤ E
[
Z2
]

= E
[
(aX − bY )2

]
= a2E

[
X2
]
− 2abE[XY ] + b2E

[
Y 2
]

quadratic in a with at most one real root and therefore has discriminant≤ 0.
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Takeb 6= 0

E[XY ]2 ≤ E
[
X2
]
E
[
Y 2
]

Corollary.

|Corr(X, Y )| ≤ 1

Proof. Apply Cauchy-Schwarz to the random variablesX − E[X] andY − E[Y ]

4.3 Markov’s Inequality

Theorem 4.3. If X is any random variable with finite mean then,

P(|X| ≥ a) ≤ E[|X|]
a

for any a≥ 0

Proof. Let

A = |X| ≥ a

Then |X| ≥ aI[A]

Take expectation

E[|X|] ≥ aP(A)
E[|X|] ≥ aP(|X| ≥ a)

4.4 Chebyshev’s Inequality

Theorem 4.4. Let X be a random variable withE
[
X2
]
≤ ∞. Then∀ε ≥ 0

P(|X| ≥ ε) ≤
E
[
X2
]

ε2

Proof.

I[|X| ≥ ε] ≤ x2

ε2
∀x
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Then

I[|X| ≥ ε] ≤ x2

ε2

Take Expectation

P(|X| ≥ ε) ≤ E
[
x2

ε2

]
=

E
[
X2
]

ε2

Note

1. The result is “distribution free” - no assumption about the distribution of X (other
thanE

[
X2
]
≤ ∞).

2. It is the “best possible” inequality, in the following sense

X = +ε with probability
c

2ε2

= −ε with probability
c

2ε2

= 0 with probability1− c

ε2

ThenP(|X| ≥ ε) =
c

ε2

E
[
X2
]

= c

P(|X| ≥ ε) =
c

ε2
=

E
[
X2
]

ε2

3. If µ = E[X] then applying the inequality toX − µ gives

P(X − µ ≥ ε) ≤ VarX

ε2

Often the most useful form.

4.5 Law of Large Numbers

Theorem 4.5 (Weak law of large numbers).Let X1, X2..... be a sequences of inde-
pendent identically distributed random variables with Varianceσ2 ≤ ∞ Let

Sn =
n∑

i=1

Xi

Then

∀ε ≥ 0, P
(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

)
→ 0 asn →∞
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Proof. By Chebyshev’s Inequality

P
(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

)
≤

E
[
(Sn

n − µ)2
]

ε2

=
E
[
(Sn − nµ)2

]
n2ε2

properties of expectation

=
VarSn

n2ε2
SinceE[Sn] = nµ

But VarSn = nσ2

ThusP
(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

)
≤ nσ2

n2ε2
=

σ2

nε2
→ 0

Example. A1, A2... are independent events, each with probability p. LetXi = I[Ai].
Then

Sn

n
=

nA

n
=

number of times A occurs
number of trials

µ = E[I[Ai]] = P(Ai) = p

Theorem states that

P
(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
→ 0 asn →∞

Which recovers the intuitive definition of probability.

Example. A Random Sample of size n is a sequenceX1, X2, . . . , Xn of independent
identically distributed random variables (’n observations’)

X̄ =
∑n

i=1 Xi

n
is called the SAMPLE MEAN

Theorem states that provided the variance ofXi is finite, the probability that the sample
mean differs from the mean of the distribution by more thanε approaches 0 asn →∞.

We have shown the weak law of large numbers. Why weak?∃ a strong form of
larger numbers.

P
(

Sn

n
→ µ asn →∞

)
= 1

This is NOT the same as the weak form. What does this mean?
ω ∈ Ω determines

Sn

n
, n = 1, 2, . . .

as a sequence of real numbers. Hence it either tends toµ or it doesn’t.

P
(

ω :
Sn(ω)

n
→ µ asn →∞

)
= 1
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Chapter 5

Generating Functions

In this chapter, assume that X is a random variable taking values in the range0, 1, 2, . . ..
Let pr = P(X = r) r = 0, 1, 2, . . .

Definition 5.1. The Probability Generating Function(p.g.f) of the random variable
X,or of the distributionpr = 0, 1, 2, . . . , is

p(z) = E
[
zX
]

=
∞∑

r=0

zrP(X = r) =
∞∑

r=0

prz
r

Thisp(z) is a polynomial or a power series. If a power series then it is convergent for
|z| ≤ 1 by comparison with a geometric series.

|p(z)| ≤
∑

r

pr |z|r ≤
∑

r

pr = 1

Example.

pr =
1
6

r = 1, . . . , 6

p(z) = E
[
zX
]

=
1
6
(
1 + z + . . . z6

)
=

z

6
1− z6

1− z

Theorem 5.1. The distribution of X is uniquely determined by the p.g.fp(z).

Proof. We know that we can differential p(z) term by term for|z| ≤ 1

p
′
(z) = p1 + 2p2z + . . .

and sop
′
(0) = p1 (p(0) = p0)

Repeated differentiation gives

p(i)(z) =
∞∑

r=i

r!
(r − i)!

prz
r−i

and hasp(i) = 0 = i!pi Thus we can recoverp0, p1, . . . from p(z)

31
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Theorem 5.2 (Abel’s Lemma).

E[X] = lim
z→1

p′(z)

Proof.

p′(z) =
∞∑

r=i

rprz
r−1 |z| ≤ 1

Forz ∈ (0, 1), p′(z) is a non decreasing function of z and is bounded above by

E[X] =
∞∑

r=i

rpr

Chooseε ≥ 0, N large enough that

N∑
r=i

rpr ≥ E[X]− ε

Then

lim
z→1

∞∑
r=i

rprz
r−1 ≥ lim

z→1

N∑
r=i

rprz
r−1 =

N∑
r=i

rpr

True∀ε ≥ 0 and so
E[X] = lim

z→1
p′(z)

Usuallyp′(z) is continuous at z=1, thenE[X] = p′(1).(
Recallp(z) =

z

6
1− z6

1− z

)
Theorem 5.3.

E[X(X − 1)] = lim
z→1

p′′(z)

Proof.

p′′(z) =
∞∑

r=2

r(r − 1)pzr−2

Proof now the same as Abel’s Lemma

Theorem 5.4. Suppose thatX1, X2, . . . , Xn are independent random variables with
p.g.f ’sp1(z), p2(z), . . . , pn(z). Then the p.g.f of

X1 + X2 + . . . Xn

is
p1(z)p2(z) . . . pn(z)

Proof.

E
[
zX1+X2+...Xn

]
= E

[
zX1 .zX2 . . . .zXn

]
= E

[
zX1

]
E
[
zX2

]
. . . E

[
zXn

]
= p1(z)p2(z) . . . pn(z)
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Example. Suppose X has Poisson Distribution

P(X = r) = e−λ λr

r!
r = 0, 1, . . .

Then

E
[
zX
]

=
∞∑

r=0

zre−λ λr

r!

= e−λe−λz

= e−λ(1−z)

Let’s calculate the variance of X

p
′
= λe−λ(1−z) p

′′
= λ2e−λ(1−z)

Then

E[X] = lim
z→1

p
′
(z) = p

′
(1)( Sincep

′
(z) continuous atz = 1 )E[X] = λ

E[X(X − 1)] = p
′′
(1) = λ2

VarX = E
[
X2
]
− E[X]2

= E[X(X − 1)] + E[X]− E[X]2

= λ2 + λ− λ2

= λ

Example. Suppose that Y has a Poisson Distribution with parameterµ. If X and Y are
independent then:

E
[
zX+Y

]
= E

[
zX
]
E
[
zY
]

= e−λ(1−z)e−µ(1−z)

= e−(λ+µ)(1−z)

But this is the p.g.f of a Poisson random variable with parameterλ+µ. By uniqueness
(first theorem of the p.g.f) this must be the distribution forX + Y

Example. X has a binomial Distribution,

P(X = r) =
(

n

r

)
pr(1− p)n−r r = 0, 1, . . .

E
[
zX
]

=
n∑

r=0

(
n

r

)
pr(1− p)n−rzr

= (pz + 1− p)n

This shows thatX = Y1 + Y2 + · · ·+ Yn. WhereY1 + Y2 + · · ·+ Yn are independent
random variables each with

P(Yi = 1) = p P(Yi = 0) = 1− p

Note if the p.g.f factorizes look to see if the random variable can be written as a sum.
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5.1 Combinatorial Applications

Tile a (2× n) bathroom with(2× 1) tiles. How many ways can this be done? Sayfn

fn = fn−1 + fn−2 f0 = f1 = 1

Let

F (z) =
∞∑

n=0

fnzn

fnzn = fn−1z
n + fn−2z

n

∞∑
n=2

fnzn =
∞∑

n=2

fn−1z
n +

∞∑
n=0

fn−2z
n

F (z)− f0 − zf1 = z(F (z)− f0) + z2F (z)

F (z)(1− z − z2) = f0(1− z) + zf1

= 1− z + z = 1.

Sincef0 = f1 = 1, thenF (z) = 1
1−z−z2

Let

α1 =
1 +

√
5

2
α2 =

1−
√

5
2

F (z) =
1

(1− α1z)(1− α2z)

=
α1

(1− α1z)
− α2

(1− α2z)

=
1

α1 − α2

(
α1

∞∑
n=0

αn
1 zn − α2

∞∑
n=0

αn
2 zn

)
The coefficient ofzn

1 , that isfn, is

fn =
1

α1 − α2
(αn+1

1 − αn+1
2 )

5.2 Conditional Expectation

Let X andY be random variables with joint distribution

P(X = x, Y = y)

Then the distribution of X is

P(X = x) =
∑

y∈Ry

P(X = x, Y = y)

This is often called the Marginal distribution forX. The conditional distribution forX
given byY = y is

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
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Definition 5.2. The conditional expectation of X givenY = y is,

E[X = x|Y = y] =
∑

x∈Rx

xP(X = x|Y = y)

The conditional Expectation of X given Y is the random variableE[X|Y ] defined by

E[X|Y ] (ω) = E[X|Y = Y (ω)]

ThusE[X|Y ] : Ω → R

Example. Let X1, X2, . . . , Xn be independent identically distributed random vari-
ables withP(X1 = 1) = p andP(X1 = 0) = 1− p. Let

Y = X1 + X2 + · · ·+ Xn

Then

P(X1 = 1|Y = r) =
P(X1 = 1, Y = r)

P(Y = r)

=
P(X1 = 1, X2 + · · ·+ Xn = r − 1)

P(Y = r)

=
P(X1) P(X2 + · · ·+ Xn = r − 1)

P(Y = r)

=
p
(
n−1
r−1

)
pr−1(1− p)n−r(

n
r

)
pr(1− p)n−r

=

(
n−1
r−1

)(
n
r

)
=

r

n

Then

E[X1|Y = r] = 0× P(X1 = 0|Y = r) + 1× P(X1 = 1|Y = r)

=
r

n

E[X1|Y = Y (ω)] =
1
n

Y (ω)

ThereforeE[X1|Y ] =
1
n

Y

Notea random variable - a function ofY .

5.3 Properties of Conditional Expectation

Theorem 5.5.

E[E[X|Y ]] = E[X]
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Proof.

E[E[X|Y ]] =
∑

y∈Ry

P(Y = y) E[X|Y = y]

=
∑

y

P(Y = y)
∑

x∈Rx

P(X = x|Y = y)

=
∑

y

∑
x

xP(X = x|Y = y)

= E[X]

Theorem 5.6. If X andY are independent then

E[X|Y ] = E[X]

Proof. If X andY are independent then for anyy ∈ Ry

E[X|Y = y] =
∑

x∈Rx

xP(X = x|Y = y) =
∑

x

xP(X = x) = E[X]

Example. Let X1, X2, . . . be i.i.d.r.v’s with p.g.fp(z). Let N be a random variable
independent ofX1, X2, . . . with p.g.fh(z). What is the p.g.f of:

X1 + X2 + · · ·+ XN

E
[
zX1+,...,Xn

]
= E

[
E
[
zX1+,...,Xn |N

]]
=

∞∑
n=0

P(N = n) E
[
zX1+,...,Xn |N = n

]
=

∞∑
n=0

P(N = n) (p(z))n

= h(p(z))

Then for example

E[X1+, . . . , Xn] =
d

dz
h(p(z))

∣∣∣∣
z=1

= h
′
(1)p

′
(1) = E[N ] E[X1]

ExerciseCalculate d2

dz2 h(p(z)) and hence

VarX1+, . . . , Xn

In terms ofVarN andVarX1
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5.4 Branching Processes

X0, X1 . . . sequence of random variables.Xn number of individuals in thenth gener-
ation of population. Assume.

1. X0 = 1

2. Each individual lives for unit time then on death producesk offspring, probabil-
ity fk.

∑
fk = 1

3. All offspring behave independently.

Xn+1 = Y n
1 + Y n

2 + · · ·+ Y n
n

WhereY n
i are i.i.d.r.v’s.Y n

i number of offspring of individuali in generationn.

Assume

1. f0 ≥ 0

2. f0 + f1 ≤ 1

Let F(z) be the probability generating function ofY n
i .

F (z) =
∞∑

n=0

fkzk = E
[
zXi
]

= E
[
zY n

i

]
Let

Fn(z) = E
[
zXn

]
ThenF1(z) = F (z) the probability generating function of the offspring distribution.

Theorem 5.7.
Fn+1(z) = Fn(F (z)) = F (F (. . . (F (z)) . . . ))

Fn(z) is an n-fold iterative formula.
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Proof.

Fn+1(z) = E
[
zXn+1

]
= E

[
E
[
zXn+1 |Xn

]]
=

∞∑
n=0

P(Xn = k) E
[
zXn+1 |Xn = k

]
=

∞∑
n=0

P(Xn = k) E
[
zY n

1 +Y n
2 +···+Y n

n

]
=

∞∑
n=0

P(Xn = k) E
[
zY n

1

]
. . . E

[
zY n

n

]
=

∞∑
n=0

P(Xn = k) (F (z))k

= Fn(F (z))

Theorem 5.8. Mean and Variance of population size

If m =
∞∑

k=0

kfk ≤ ∞

andσ2 =
∞∑

k=0

(k −m)2fk ≤ ∞

Mean and Variance of offspring distribution.
ThenE[Xn] = mn

VarXn =

{
σ2mn−1(mn−1)

m−1 , m 6= 1
nσ2, m = 1

(5.1)

Proof. Prove by calculatingF
′
(z), F

′′
(z) Alternatively

E[Xn] = E[E[Xn|Xn−1]]
= E[m|Xn−1]
= mE[Xn−1]
= mn by induction

E
[
(Xn −mXn−1)2

]
= E

[
E
[
(Xn −mXn−1)2|Xn

]]
= E[Var (Xn|Xn−1)]

= E
[
σ2Xn−1

]
= σ2mn−1

Thus

E
[
X2

n

]
− 2mE[XnXn−1] + m2E

[
X2

n−1

]2
= σ2mn−1
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Now calculate

E[XnXn−1] = E[E[XnXn−1|Xn−1]]
= E[Xn−1E[Xn|Xn−1]]
= E[Xn−1mXn−1]

= mE
[
X2

n−1

]
ThenE

[
X2

n

]
= σ2mn−1 + m2E[Xn−1]

2

VarXn = E
[
X2

n

]
− E[Xn]2

= m2E
[
X2

n−1

]
+ σ2mn−1 −m2E[Xn−1]

2

= m2 VarXn−1 + σ2mn−1

= m4 VarXn−2 + σ2(mn−1 + mn)

= m2(n−1) VarX1 + σ2(mn−1 + mn + · · ·+ m2n−3)

= σ2mn−1(1 + m + · · ·+ mn)

To deal with extinction we need to be careful with limits asn →∞. Let

An = Xn = 0
= Extinction occurs by generationn

and letA =
∞⋃
1

An

= the event that extinction ever occurs

Can we calculateP(A) from P(An)?
More generally letAn be an increasing sequence

A1 ⊂ A2 ⊂ . . .

and define

A = lim
n→∞

An =
∞⋃
1

An

DefineBn for n ≥ 1

B1 = A1

Bn = An ∩

(
n−1⋃
i=1

Ai

)c

= An ∩Ac
n−1
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Bn for n ≥ 1 are disjoint events and

∞⋃
i=1

Ai =
∞⋃

i=1

Bi

n⋃
i=1

Ai =
n⋃

i=1

Bi

P

( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)

=
∞∑
1

P(Bi)

= lim
n→∞

n∑
1

P(Bi)

= lim
n→∞

n⋃
i=1

Bi

= lim
n→∞

n⋃
i=1

Ai

= lim
n→∞

P(An)

Thus
P
(

lim
n→∞

An

)
= lim

n→∞
P(An)

Probability is a continuous set function. Thus

P(extinction ever occurs) = lim
n→∞

P(An)

= lim
n→∞

P(Xn = 0)

= q, Say

NoteP(Xn = 0), n = 1, 2, 3, . . . is an increasing sequence so limit exists. But

P(Xn = 0) = Fn(0) Fn is the p.g.f ofXn

So
q = lim

n→∞
Fn(0)

Also

F (q) = F
(

lim
n→∞

Fn(0)
)

= lim
n→∞

F (Fn(0)) Since F is continuous

= lim
n→∞

Fn+1(0)

ThusF (q) = q

“q” is called theExtinction Probability.
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Alternative Derivation

q =
∑

k

P(X1 = k) P(extinction|X1 = k)

=
∑

P(X1 = k) qk

= F (q)

Theorem 5.9. The probability of extinction,q, is the smallest positive root of the equa-
tion F (q) = q. m is the mean of the offspring distribution.

If m ≤ 1 thenq = 1, while if m ≥ 1thenq ≤ 1

Proof.

F (1) = 1 m =
∞∑
0

kf
′

k = lim
z→1

F
′
(z)

F
′′
(z) =

∞∑
j=z

j(j − 1)zj−2 in 0 ≤ z ≤ 1 Sincef0 + f1 ≤ 1 Also F (0) = f0 ≥ 0

Thus if m ≤ 1, there does not exists aq ∈ (0, 1) with F (q) = q. If m ≥ 1 then letα

be the smallest positive root ofF (z) = z thenα ≤ 1. Further,

F (0) ≤ F (α) = α

F (F (0)) ≤ F (α) = α

Fn(0) ≤ α ∀n ≥ 1
q = lim

n→∞
Fn(0) ≤ 0

q = α Sinceq is a root ofF (z) = z
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5.5 Random Walks

Let X1, X2, . . . be i.i.d.r.vs. Let

Sn = S0 + X1 + X2 + · · ·+ Xn Where, usuallyS0 = 0

ThenSn (n = 0, 1, 2, . . . is a 1 dimensionalRandom Walk.

We shall assume

Xn =

{
1, with probabilityp

−1, with probabilityq
(5.2)

This is a simple random walk. Ifp = q = 1
2 then the random walk is calledsymmetric

Example (Gambler’s Ruin). You have an initial fortune ofA and I have an initial
fortune ofB. We toss coins repeatedly I win with probabilityp and you win with
probability q. What is the probability that I bankrupt you before you bankrupt me?
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Seta = A + B andz = B Stop a random walk starting atz when it hits0 or a.

Let pz be the probability that the random walk hitsa before it hits0, starting from
z. Let qz be the probability that the random walk hits0 before it hitsa, starting from
z. After the first step the gambler’s fortune is eitherz − 1 or z + 1 with probp andq
respectively. From the law of total probability.

pz = qpz−1 + ppz+1 0 ≤ z ≤ a

Alsop0 = 0 andpa = 1. Must solvept2 − t + q = 0.

t =
1±

√
1− 4pq

2p
=

1±
√

1− 2p

2p
= 1 or

q

p

General Solution forp 6= q is

pz = A + B

(
q

p

)z

A + B = 0A =
1

1−
(

q
p

)a

and so

pz =
1−

(
q
p

)z

1−
(

q
p

)a

If p = q, the general solution isA + Bz

pz =
z

a

To calculateqz, observe that this is the same problem withp, q, z replaced byp, q, a−z
respectively. Thus

qz =

(
q
p

)a

−
(

q
p

)z

(
q
p

)a

− 1
if p 6= q
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or
qz =

a− z

z
if p = q

Thusqz + pz = 1 and so on, as we expected, the game ends with probability one.

P(hits0 beforea) = qz

qz =

(
q
p

)a

− ( q
p )z(

q
p

)a

− 1
if p 6= q

Or =
a− z

z
if p = q

What happens asa →∞?

P( paths hit0 ever) =
∞⋃

a=z+1

path hits0 before it hitsa

P(hits0 ever) = lim
a→∞

P(hits0 beforea)

= lim
a→∞

qz

=
(

q

p

)
p ≥ q

= 1 p = q

LetG be the ultimate gain or loss.

G =

{
a− z, with probabilitypz

−z, with probabilityqz

(5.3)

E[G] =

{
apz − z, if p 6= q

0, if p = q
(5.4)

Fair game remains fairif the coin is fair then then games based on it have expected
reward0.

Duration of a Game Let Dz be the expected time until the random walk hits0
or a, starting fromz. Is Dz finite? Dz is bounded above byx the mean of geometric
random variables (number of window’s of size a before a window with all+1′s or
−1′s). HenceDz is finite. Consider the first step. Then

Dz = 1 + pDz+1 + qDz−1

E[duration] = E[E[duration| first step]]
= p (E[duration| first step up]) + q (E[duration| first step down])
= p(1 + Dz+1) + q(1 + Dz−1)

Equation holds for0 ≤ z ≤ a with D0 = Da = 0. Let’s try for a particular solution
Dz = Cz

Cz = Cp(z + 1) + Cq(z − 1) + 1

C =
1

q − p
for p 6= q
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Consider the homogeneous relation

pt2 − t + q = 0 t1 = 1 t2 =
q

p

General Solution forp 6= q is

Dz = A + B

(
q

p

)z

+
z

q = p

Substitutez = 0, a to getA andB

Dz =
z

q − p
− a

q − p

1−
(

q
p

)z

1−
(

q
p

)a p 6= q

If p = q then a particular solution is−z2. General solution

Dz − z2 + A + Bz

Substituting the boundary conditions given.,

Dz = z(a− z) p = q

Example. Initial Capital.

p q z a P(ruin) E[gain] E[duration]
0.5 0.5 90 100 0.1 0 900
0.45 0.55 9 10 0.21 -1.1 11
0.45 0.55 90 100 0.87 -77 766

Stop the random walk when it hits0 or a.
We haveabsorptionat 0 or a. Let

Uz,n = P(r.w. hits 0 at time n—starts at z)

Uz,n+1 = pUz+1,n + qUz−1,n 0 ≤ z ≤ a n ≥ 0
U0,n = Ua,n = 0 n ≥ 0
Ua,0 = 1Uz,0 = 0 0 ≤ z ≤ a

LetUz =
∞∑

n=0

Uz,nsn.

Now multiply bysn+1 and add forn = 0, 1, 2 . . .

Uz(s) = psUz+1(s) + qsUz−1(s)
WhereU0(s) = 1 andUa(s) = 0

Look for a solution
Ux(s) = (λ(s))z

λ(s)
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Must satisfy
λ(s) = ps ((λ(s))2 + qs

Two Roots,

λ1(s), λ2(s) =
1±

√
1− 4pqs2

2ps

Every Solution of the form

Uz(s) = A(s) (λ1(s))
z + B(s) (λ2(s))

z

SubstituteU0(s) = 1 andUa(s) = 0.A(s) + B(s) = 1 and

A(s) (λ1(s))
a + B(s) (λ2(s))

a = 0

Uz(s) =
(λ1(s))

a (λ2(s))
z − (λ1(s))

z (λ2(s))
a

(λ1(s))
a − (λ2(s))

a

Butλ1(s)λ2(s) =
q

p
recall quadratic

Uz(s) =
(

q

p

)
(λ1(s))

a−z − (λ2(s))
a−z

(λ1(s))
a − (λ2(s))

a

Same method give generating function for absorption probabilities at the other barrier.
Generating function for the duration of the game is the sum of these two generating
functions.



Chapter 6

Continuous Random Variables

In this chapter we drop the assumption thatΩ id finite or countable. Assume we are
given a probabilityp on some subset ofΩ.

For example, spin a pointer, and letω ∈ Ω give the position at which it stops, with
Ω = ω : 0 ≤ ω ≤ 2π. Let

P(ω ∈ [0, θ]) =
θ

2π
(0 ≤ θ ≤ 2π)

Definition 6.1. A continuous random variableX is a functionX : Ω → R for which

P(a ≤ X(ω) ≤ b) =
∫ b

a

f(x)dx

Wheref(x) is a function satisfying

1. f(x) ≥ 0

2.
∫ +∞
−∞ f(x)dx = 1

The function f is called theProbability Density Function.

For example, ifX(ω) = ω given position of the pointer then x is a continuous
random variable with p.d.f

f(x) =

{
1
2π , (0 ≤ x ≤ 2π)
0, otherwise

(6.1)

This is an example of a uniformly distributed random variable. On the interval[0, 2π]

47
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in this case. Intuition about probability density functions is based on the approximate
relation.

P(X ∈ [x, x + xδx]) =
∫ x+xδx

x

f(z)dz

Proofs however more often use the distribution function

F (x) = P(X ≤ x)

F (x) is increasing inx.

If X is a continuous random variable then

F (x) =
∫ x

−∞
f(z)dz

and soF is continuous and differentiable.

F
′
(x) = f(x)

(At any point x where then fundamental theorem of calculus applies).
The distribution function is also defined for a discrete random variable,

F (x) =
∑

ω:X(ω)≤x

pω

and so F is a step function.

In either case

P(a ≤ X ≤ b) = P(X ≤ b)− P(X ≤ a) = F (b)− F (a)
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Example. The exponential distribution. Let

F (x) =

{
1− e−λx, 0 ≤ x ≤ ∞
0, x ≤ 0

(6.2)

The corresponding pdf is

f(x) = λe−λx 0 ≤ x ≤ ∞

this is known as the exponential distribution with parameterλ. If X has this distribu-
tion then

P(X ≤ x + z|X ≤ z) =
P(X ≤ x + z)

P(X ≤ z)

=
e−λ(x+z)

e−λz

= e−λx

= P(X ≤ x)

This is known as the memoryless property of the exponential distribution.

Theorem 6.1. If X is a continuous random variable with pdff(x) andh(x) is a contin-
uous strictly increasing function withh−1(x) differentiable thenh(x) is a continuous
random variable with pdf

fh(x) = f
(
h−1(x)

) d

dx
h−1(x)

Proof. The distribution function ofh(X) is

P(h(X) ≤ x) = P
(
X ≤ h−1(x)

)
= F

(
h−1(x)

)
Sinceh is strictly increasing andF is the distribution function of X Then.

d

dx
P(h(X) ≤ x)

is a continuous random variable with pdf as claimedfh. Noteusually need to repeat
proof than remember the result.
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Example. SupposeX ∼ U [0, 1] that is it is uniformly distributed on[0, 1] Consider
Y = − log x

P(Y ≤ y) = P(− log X ≤ y)

= P
(
X ≥ e−Y

)
=
∫ 1

e−Y

1dx

= 1− e−Y

Thus Y is exponentially distributed.

More generally

Theorem 6.2.LetU ∼ U [0, 1]. For any continuous distribution function F, the random
variableX defined byX = F−1(u) has distribution functionF .

Proof.

P(X ≤ x) = P
(
F−1(u) ≤ x

)
= P(U ≤ F (x))
= F (x) ∼ U [0, 1]

Remark

1. a bit more messy for discrete random variables

P(X = Xi) = pi i = 0, 1, . . .

Let

X = xj if
j−1∑
i=0

pi ≤ U ≤
j∑

i=0

pi U ∼ U [0, 1]

2. useful for simulations

6.1 Jointly Distributed Random Variables

For two random variablesX andY the joint distribution function is

F (x, y) = P(X ≤ x, Y ≤ y) F : R2 → [0, 1]

Let

FX(x) = P(Xz ≤ x)
= P(X ≤ x, Y ≤ ∞)
= F (x,∞)
= lim

y→∞
F (x, y)
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This is called the marginal distribution of X. Similarly

FY (x) = F (∞, y)

X1, X2, . . . , Xn are jointly distributed continuous random variables if for a setc ∈ Rb

P((X1, X2, . . . , Xn) ∈ c) =
∫∫

. . .

∫
(x1,...,xn)∈c

f(x1, . . . , xn)dx1 . . . dxn

For some function f called the joint probability density function satisfying the obvious
conditions.

1.
f(x1, . . . , xn)dx1 ≥ 0

2. ∫∫
. . .

∫
Rn

f(x1, . . . , xn)dx1 . . . dxn = 1

Example. (n = 2)

F (x, y) = P(X ≤ x, Y ≤ y)

=
∫ x

−∞

∫ y

−∞
f(u, v)dudv

and sof(x, y) =
∂2F (x, y)

∂x∂y

Theorem 6.3. provided defined at(x, y). If X andy are jointly continuous random
variables then they are individually continuous.

Proof. Since X and Y are jointly continuous random variables

P(X ∈ A) = P(X ∈ A, Y ∈ (−∞,+∞))

=
∫

A

∫ ∞

−∞
f(x, y)dxdy

= fAfX(x)dx

wherefX(x) =
∫ ∞

−∞
f(x, y)dy

is the pdf ofX.

Jointly continuous random variablesX andY areIndependentif

f(x, y) = fX(x)fY (y)
ThenP(X ∈ A, Y ∈ B) = P(X ∈ A) P(Y ∈ B)

Similarly jointly continuous random variablesX1, . . . , Xn are independent if

f(x1, . . . , xn) =
n∏

i=1

fXi(xi)
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WherefXi
(xi) are the pdf’s of the individual random variables.

Example. Two pointsX andY are tossed at random and independently onto a line
segment of length L. What is the probability that:

|X − Y | ≤ l?

Suppose that “at random” means uniformly so that

f(x, y) =
1
L2

x, y ∈ [0, L]2
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Desired probability

=
∫∫

A

f(x, y)dxdy

=
area of A

L2

=
L2 − 2 1

2 (L− l)2

L2

=
2Ll − l2

L2

Example (Buffon’s Needle Problem).A needle of length l is tossed at random onto a
floor marked with parallel lines a distance L apartl ≤ L. What is the probability that
the needle intersects one of the parallel lines.

Let θ ∈ [0, 2π] be the angle between the needle and the parallel lines and letx be
the distance from the bottom of the needle to the line closest to it. It is reasonable to
suppose that X is distributedUniformly.

X ∼ U [0, L] Θ ∼ U [0, π)

andX andΘ are independent. Thus

f(x, θ) =
1
lπ

0 ≤ x ≤ L and0 ≤ θ ≤ π



54 CHAPTER 6. CONTINUOUS RANDOM VARIABLES

The needle intersects the line if and only ifX ≤ sin θ The event A

=
∫∫

A

f(x, θ)dxdθ

= l

∫ π

0

sin θ

πL
dθ

=
2l

πL

Definition 6.2. Theexpectationor mean of a continuous random variableX is

E[X] =
∫ ∞

−∞
xf(x)dx

provided not both of
∫∞
−∞ xf(x)dx and

∫ 0

−∞ xf(x)dx are infinite

Example (Normal Distribution). Let

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 −∞ ≤ x ≤ ∞

This is non-negative for it to be a pdf we also need to check that∫ ∞

−∞
f(x)dx = 1

Make the substitutionz = x−µ
σ . Then

I =
1√
2πσ

∫ ∞

−∞
e
−(x−µ)2

2σ2 dx

=
1√
2π

∫ ∫ ∞

−∞
e
−z2

2 dz

ThusI2 =
1
2π

[∫ ∞

−∞
e
−x2

2 dx

] [∫ ∞

−∞
e
−y2

2 dy

]
=

1
2π

∫ ∞

−∞

∫ ∞

−∞
e
−(y2+x2)

2 dxdy

=
1
2π

∫ 2π

0

∫ ∞

0

re
−θ2

2 drdθ

=
∫ 2π

0

dθ = 1

ThereforeI = 1. A random variable with the pdf f(x) given above has aNormal
distributionwith parametersµ andσ2 we write this as

X ∼ N [µ, σ2]

The Expectation is

E[X] =
1√
2πσ

∫ ∞

−∞
xe

−(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞

−∞
(x− µ)e

−(x−µ)2

2σ2 dx +
1√
2πσ

∫ ∞

−∞
µe

−(x−µ)2

2σ2 dx.



6.1. JOINTLY DISTRIBUTED RANDOM VARIABLES 55

The first term is convergent and equals zero by symmetry, so that

E[X] = 0 + µ

= µ

Theorem 6.4. If X is a continuous random variable then,

E[X] =
∫ ∞

0

P(X ≥ x) dx−
∫ ∞

0

P(X ≤ −x) dx

Proof. ∫ ∞

0

P(X ≥ x) dx =
∫ ∞

0

[∫ ∞

x

f(y)dy

]
dx

=
∫ ∞

0

∫ ∞

0

I[y ≥ x]f(y)dydx

=
∫ ∞

0

∫ y

0

dxf(y)dy

=
∫ ∞

0

yf(y)dy

Similarly
∫ ∞

0

P(X ≤ −x) dx =
∫ 0

−∞
yf(y)dy

result follows.

NoteThis holds for discrete random variables and is useful as a general way of
finding the expectation whether the random variable is discrete or continuous.

If X takes values in the set[0, 1, . . . , ] Theorem states

E[X] =
∞∑

n=0

P(X ≥ n)

and a direct proof follows

∞∑
n=0

P(X ≥ n) =
∞∑

n=0

∞∑
m=0

I[m ≥ n]P(X = m)

=
∞∑

m=0

( ∞∑
n=0

I[m ≥ n]

)
P(X = m)

=
∞∑

m=0

mP(X = m)

Theorem 6.5. Let X be a continuous random variable with pdff(x) and leth(x) be
a continuous real-valued function. Then provided

∫ ∞

−∞
|h(x)| f(x)dx ≤ ∞

E[h(x)] =
∫ ∞

−∞
h(x)f(x)dx
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Proof. ∫ ∞

0

P(h(X) ≥ y) dy

=
∫ ∞

0

[∫
x:h(x)≥0

f(x)dx

]
dy

=
∫ ∞

0

∫
x:h(x)≥0

I[h(x) ≥ y]f(x)dxdy

=
∫

x:h(x)

[∫ h(x)≥0

0

dy

]
f(x)dx

=
∫

x:h(x)≥0

h(x)f(x)dy

Similarly
∫ ∞

0

P(h(X) ≤ −y) = −
∫

x:h(x)≤0

h(x)f(x)dy

So the result follows from the last theorem.

Definition 6.3. The variance of a continuous random variableX is

VarX = E
[
(X − E[X])2

]
NoteThe properties of expectation and variance are the same for discrete and contin-
uous random variables just replace

∑
with

∫
in the proofs.

Example.

VarX = E
[
X2
]
− E[X]2

=
∫ ∞

−∞
x2f(x)dx−

(∫ ∞

−∞
xf(x)dx

)2

Example. SupposeX ∼ N [µ, σ2] Letz = X−µ
σ then

P(Z ≤ z) = P
(

X − µ

σ
≤ z

)
= P(X ≤ µ + σz)

=
∫ µ+σz

−∞

1√
2πσ

e
−(x−µ)2

2σ2 dx

Let

(
u =

x− µ

σ

)
=
∫ z

−∞

1√
2π

e
−u2

2 du

= Φ(z) The distribution function of aN(0, 1) random variable

Z ∼ N(0, 1)
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What is the variance ofZ?

VarX = E
[
Z2
]
− E[Z]2 Last term is zero

=
1√
2π

∫ ∞

−∞
z2e

−z2
2 dz

=
[
− 1√

2π
ze

−z2
2

]∞
−∞

+
∫ ∞

−∞
e
−z2

2 dz

= 0 + 1 = 1
VarX = 1

Variance ofX?

X = µ + σz

ThusE[X] = µ we know that already

VarX = σ2 VarZ

VarX = σ2

X ∼ (µ, σ2)

6.2 Transformation of Random Variables

SupposeX1, X2, . . . , Xn have joint pdff(x1, . . . , xn) let

Y1 = r1(X1, X2, . . . , Xn)
Y2 = r2(X1, X2, . . . , Xn)

...

Yn = rn(X1, X2, . . . , Xn)

Let R ∈ Rn be such that

P((X1, X2, . . . , Xn) ∈ R) = 1

Let S be the image ofR under the above transformation suppose the transformation
from R to S is 1-1 (bijective).
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Then∃ inverse functions

x1 = s1(y1, y2, . . . , yn)
x2 = s2(y1, y2, . . . , yn) . . .

xn = sn(y1, y2, . . . , yn)

Assume that∂si

∂yj
exists and is continuous at every point(y1, y2, . . . , yn) in S

J =

∣∣∣∣∣∣∣
∂s1
∂y1

. . . ∂s1
∂yn

...
...

...
∂sn

∂y1
. . . ∂sn

∂yn

∣∣∣∣∣∣∣ (6.3)

If A ⊂ R

P((X1, . . . , Xn) ∈ A) [1] =
∫
· · ·
∫

A

f(x1, . . . , xn)dx1 . . . dxn

=
∫
· · ·
∫

B

f (s1, . . . , sn) |J | dy1 . . . dyn

Where B is the image of A

= P((Y1, . . . , Yn) ∈ B) [2]

Since transformation is 1-1 then [1],[2] are the same

Thus the density forY1, . . . , Yn is

g((y1, y2, . . . , yn) = f (s1(y1, y2, . . . , yn), . . . , sn(y1, y2, . . . , yn)) |J |
y1, y2, . . . , yn ∈ S

= 0 otherwise.

Example (density of products and quotients).Suppose that(X, Y ) has density

f(x, y) =

{
4xy, for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0, Otherwise.

(6.4)

LetU = X
Y andV = XY
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X =
√

UV Y =

√
V

U

x =
√

uv y =
√

v

u

∂x

∂u
=

1
2

√
v

u

∂x

∂v
=

1
2

√
u

v

∂y

∂u
=
−1
2

v
1
2

u
3
2

∂y

∂v
=

1
2
√

uv
.

Therefore|J | = 1
2u and so

g(u, v) =
1
2u

(4xy)

=
1
2u

× 4
√

uv

√
v

u

= 2
u

v
if (u, v) ∈ D

= 0 Otherwise.

NoteU andV are NOT independent

g(u, v) = 2
u

v
I[(u, v) ∈ D]

not product of the two identities.
When the transformations are linear things are simpler still. LetA be then × n

invertible matrix. Y1

...
Yn

 = A

X1

...
Xn

 .

|J | = det A−1 = det A−1

Then the pdf of(Y1, . . . , Yn) is

g(y1, . . . ,n ) =
1

detA
f(A−1g)

Example. SupposeX1, X2 have the pdff(x1, x2). Calculate the pdf ofX1 + X2.
LetY = X1 + X2 andZ = X2. ThenX1 = Y − Z andX2 = Z.

A−1 =
(

1 −1
0 1

)
(6.5)

detA−1 = 1
1

det A

Then
g(y, z) = f(x1, x2) = f(y − z, z)
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joint distributions ofY andX.
Marginal density of Y is

g(y) =
∫ ∞

−∞
f(y − z, z)dz −∞ ≤ y ≤ ∞

or g(y) =
∫ ∞

−∞
f(z, y − z)dz By change of variable

If X1 andX2 are independent, with pgf’sf1 andf2 then

f(x1, x2) = f(x1)f(x2)

and theng(y) =
∫ ∞

−∞
f(y − z)f(z)dz

- the convolution off1 andf2

For the pdf f(x)x̂ is a mode iff(x̂) ≥ f(x)∀x
x̂ is a median if ∫ x̂

−∞
f(x)dx−

∫ ∞

x̂

f(x)dx =
1
2

For a discrete random variable,̂x is a median if

P(X ≤ x̂) ≥ 1
2

or P(X ≥ x̂) ≥ 1
2

If X1, . . . , Xn is a sample from the distribution then recall that the sample mean is

1
n

n∑
1

Xi

Let Y1, . . . , Yn (thestatistics) be the values ofX1, . . . , Xn arranged in increasing
order. Then the sample median isYn+1

2
if n is odd or any value in[

Yn
2
, Yn+1

2

]
if n is even

If Yn = maxX1, . . . , Xn andX1, . . . , Xn are iidrv’s with distributionF and den-
sityf then,

P(Yn ≤ y) = P(X1 ≤ y, . . . ,Xn ≤ y)
= (F (y))n
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Thus the density ofYn is

g(y) =
d

dy
(F (y))n

= n (F (y))n−1
f(y)

SimilarlyY1 = minX1, . . . , Xn and is

P(Y1 ≤ y) = 1− P(X1 ≥ y, . . . ,Xn ≥ y)
= 1− (1− F (y))n

Then the density ofY1 is

= n (1− F (y))n−1
f(y)

What about the joint density ofY1, Yn?

G(y, yn) = P(Y1 ≤ y1, Yn ≤ yn)
= P(Yn ≤ yn)− P(Yn ≤ yn, Y1 ≥1)
= P(Yn ≤ yn)− P(y1 ≤ X1 ≤ yn, y1 ≤ X2 ≤ yn, . . . , y1 ≤ Xn ≤ yn)
= (F (yn))n − (F (yn)− F (y1))

n

Thus the pdf ofY1, Yn is

g(y1, yn) =
∂2

∂y1∂yn
G(y1, yn)

= n(n− 1) (F (yn)− F (y1))
n−2

f(y1)f(yn) −∞ ≤ y1 ≤ yn ≤ ∞
= 0 otherwise

What happens if the mapping is not 1-1?X = f(x) and|X| = g(x)?

P(|X| ∈ (a, b)) =
∫ b

a

(f(x) + f(−x)) dx g(x) = f(x) + f(−x)

SupposeX1, . . . , Xn are iidrv’s. What is the pdf ofY1, . . . , Yn the order statistics?

g(y1, . . . , yn) =

{
n!f(y1) . . . f(yn), y1 ≤ y2 ≤ · · · ≤ yn

0, Otherwise
(6.6)

Example. SupposeX1, . . . , Xn are iidrv’s exponentially distributed with parameter
λ. Let

z1 = Y1

z2 = Y2 − Y1

...

zn = Yn − Yn−1

WhereY1, . . . , Yn are the order statistics ofX1, . . . , Xn. What is the distribution of
thez′s?
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Z = AY

Where

A =


1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

...
...

0 0 . . . −1 1

 (6.7)

det(A) = 1

h(z1, . . . , zn) = g(y1, . . . , yn)
= n!f(y1) . . . f(yn)

= n!λne−λy1 . . . e−λyn

= n!λne−λ(y1+···+yn)

= n!λne−λ(z12z2+···+nzn)

=
n∏

i=1

λie−λizn+1−i

Thush(z1, . . . , zn) is expressed as the product of n density functions and

Zn+1−i ∼ exp(λi)

exponentially distributed with parameterλi, with z1, . . . , zn independent.

Example. LetX andY be independentN(0.1) random variables. Let

D = R2 = X2 + Y2

thentanΘ = Y
X then

d = x2 + y2 andθ = arctan
(y

x

)

|J | =

∣∣∣∣∣∣
2x 2y
−y

x2

1+( y
x )2

1
x

1+( y
x )2

∣∣∣∣∣∣ = 2 (6.8)
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f(x, y) =
1√
2π

e
−x2

2
1√
2π

e
−y2

2

=
1
2π

e
−(x2+y2)

2

Thus

g(d, θ) =
1
4π

e
−d
2 0 ≤ d ≤ ∞ 0 ≤ θ ≤ 2π

But this is just the product of the densities

gD(d) =
1
2
e
−d
2 0 ≤ d ≤ ∞

gΘ(θ) =
1
2π

0 ≤ θ ≤ 2π

ThenD andΘ are independent.d ∼exponentially mean 2.Θ ∼ U [0, 2π].
Notethis is useful for the simulations of the normal random variable.
We know we can simulateN [0, 1] random variable byX = f ′(U) whenU ∼

U [0, 1] but this is difficult forN [0, 1] random variable since

F (x) = Θ(x) =
∫ +x

−∞

1√
2π

e
−z2

2

is difficult.
Let U1 and U2 be independent∼ U [0, 1]. Let R2 = −2 log U , so thatR2 is

exponential with mean 2.Θ = 2πU2. ThenΘ ∼ U [0, 2π]. Now let

X = R cos Θ =
√
−2 log U1 cos(2πU2)

Y = R sinΘ =
√
−2 log U2 sin(2πU1)

ThenX andY are independentN [0, 1] random variables.

Example (Bertrand’s Paradox). Calculate the probability that a “random chord” of
a circle of radius 1 has length greater that

√
3. The length of the side of an inscribed

equilateral triangle.
There are at least 3 interpretations of a random chord.
(1) The ends are independently and uniformly distributed over the circumference.

answer= 1
3
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(2)The chord is perpendicular to a given diameter and the point of intersection is
uniformly distributed over the diameter.

a2 +

(√
3

2

)2

=
(√

3
)2

answer= 1
2

(3) The foot of the perpendicular to the chord from the centre of the circle is uni-
formly distributed over the diameter of the interior circle.

interior circle has radius1
2 .

answer =
π
(

1
22

)
π12

=
1
4

6.3 Moment Generating Functions

If X is a continuous random variable then the analogue of the pgf is the moment gen-
erating function defined by

m(θ) = E
[
eθx
]

for thoseθ such thatm(θ) is finite

m(θ) =
∫ ∞

−∞
eθxf(x)dx

wheref(x) is the pdf ofX.
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Theorem 6.6. The moment generating function determines the distribution ofX, pro-
videdm(θ) is finite for some interval containing the origin.

Proof. Not proved.

Theorem 6.7. If X andY are independent random variables with moment generating
functionmx(θ) andmy(θ) thenX + Y has the moment generating function

mx+y(θ) = mx(θ)×my(θ)

Proof.

E
[
eθ(x+y)

]
= E

[
eθxeθy

]
= E

[
eθx
]
E
[
eθy
]

= mx(θ)my(θ)

Theorem 6.8. Therth moment ofX ie the expected value ofXr, E[Xr], is the coeffi-
cient of θr

r! of the series expansion ofn(θ).

Proof. Sketch of....

eθX = 1 + θX +
θ2

2!
X2 + . . .

E
[
eθX

]
= 1 + θE[X] +

θ2

2!
E
[
X2
]
+ . . .

Example. RecallX has an exponential distribution, parameterλ if it has a density
λeλx for 0 ≤ x ≤ ∞.

E
[
eθX

]
=
∫ ∞

0

eθxλeλxdx

= λ

∫ ∞

0

e−(λ−θ)xdx

=
λ

λ− θ
= m(θ) for θ ≤ λ

E[X] = m
′
(0) =

[
λ

(λ− θ)2

]
θ=0

=
1
λ

E
[
X2
]

=
[

2λ

(λ− θ)2

]
θ=0

=
2
λ2

Thus

VarX = E
[
X2
]
− E[X]2

=
2
λ2

− 1
λ2
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Example. SupposeX1, . . . , Xn are iidrvs each exponentially distributed with param-
eterλ.

Claim : X1, . . . , Xn has a gamma distribution,Γ(n, λ) with parametersn, λ. With
density

λne−λxxn−1

(n− 1)!
0 ≤ x ≤ ∞

we can check that this is a density by integrating it by parts and show that it equals 1.

E
[
eθ(X1+···+Xn)

]
= E

[
eθX1

]
. . . E

[
eθXn

]
=
[
E
[
eθX1

]]n
=
(

λ

λ− θ

)n

Suppose thatY ∼ Γ(n, λ).

E
[
eθY
]

=
∫ ∞

0

eθx λne−λxxn−1

(n− 1)!
dx

=
(

λ

λ− θ

)n ∫ ∞

0

(λ− θ)ne−(λ−θ)xxn−1

(n− 1)!
dx

Hence claim, since moment generating function characterizes distribution.

Example (Normal Distribution). X ∼ N [0, 1]

E
[
eθX

]
=
∫ ∞

−∞
eθx 1√

2πσ
e−( x−µ

2σ2 )2

dx

=
∫ ∞

−∞

1√
2πσ

exp
[
−1
2σ2

(x2 − 2xµ + µ2 − 2θσ2x)
]

dx

=
∫ ∞

−∞

1√
2πσ

exp
[
−1
2σ2

(
(x− µ− θσ2)2 − 2µσ2θ − θ2σ4

)]
dx

= eµθ+θ2 σ2
2

∫ ∞

−∞

1√
2πσ

exp
[
−1
2σ2

(x− µ− θσ2)2
]

dx

The integral equals 1 are it is the density ofN [µ + θσ2, σ2]

= eµθ+θ2 σ2
2

Which is the moment generating function ofN [µ, σ2] random variable.

Theorem 6.9. SupposeX, Y are independentX ∼ N [µ1, σ
2
1 ] and Y ∼ N [µ2, σ

2
2 ]

then

1.
X + Y ∼ N [µ1 + µ2, σ

2
1 + σ2

2 ]

2.
aX ∼ N [aµ1 + a2σ2]
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Proof. 1.

E
[
eθ(X+Y )

]
= E

[
eθX

]
E
[
eθY
]

= e(µ1θ+ 1
2 σ2

1θ2)e(µ2θ+ 1
2 σ2

2θ2)

= e(µ1+µ2)θ+ 1
2 (σ2

1+σ2
2)θ2

which is the moment generating function for

N [µ1 + µ2, σ
2
1 + σ2

2 ]

2.

E
[
eθ(aX)

]
= E

[
e(θa)X

]
= eµ1(θa)+ 1

2 σ2
1(θa)2

= e(aµ1)θ+ 1
2 a2σ2

1θ2

which is the moment generating function of

N [aµ1, a
2σ2

1 ]

6.4 Central Limit Theorem

X1, . . . , Xn iidrv’s, mean0 and varianceσ2. Xi has density

VarXi = σ2

X1 + · · ·+ Xn has Variance

VarX1 + · · ·+ Xn = nσ2
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X1+···+Xn

n has Variance

Var
X1 + · · ·+ Xn

n
=

σ2

n

X1+···+Xn√
n

has Variance

Var
X1 + · · ·+ Xn√

n
= σ2

Theorem 6.10. LetX1, . . . , Xn be iidrv’s withE[Xi] = µ andVarXi = σ2 ≤ ∞.

Sn =
n∑
1

Xi

Then∀(a, b) such that−∞ ≤ a ≤ b ≤ ∞

lim
n→∞

P
(

a ≤ Sn − nσ

σ
√

n
≤ b

)
=
∫ b

a

1√
2π

e
−z2

2 dz

Which is the pdf of aN [0, 1] random variable.
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Proof. Sketch of proof.....
WLOG takeµ = 0 andσ2 = 1. we can replaceXi by Xi−µ

σ . mgf of Xi is

mXi(θ) = E
[
eθXi

]
= 1 + θE[Xi] +

θ2

2
E
[
X2

i

]
+

θ3

3!
E
[
X3

i

]
+ . . .

= 1 +
θ2

2
+

θ3

3!
E
[
X3

i

]
+ . . .

The mgf of Sn√
n

E
[
e
θ Sn√

n

]
= E

[
e

θ√
n

(X1+···+Xn)
]

= E
[
e

θ√
n

X1
]
. . . E

[
e

θ√
n

Xn

]
= E

[
e

θ√
n

X1
]n

=
(

mX1

(
θ√
n

))n

=

(
1 +

θ2

2n
+

θ3E
[
X3
]

3!n
3
2

)n

=→ e
θ2
2 asn →∞

Which is the mgf ofN [0, 1] random variable.

Noteif Sn ∼ Bin[n, p] Xi = 1 with probability p and= 0 with probability(1−p).
Then

Sn − np
√

npq
' N [0, 1]

This is called the normal approximation the the binomial distribution. Applies asn →
∞ with p constant. Earlier we discussed the Poisson approximation to the binomial.
which applies whenn →∞ andnp is constant.

Example. There are two competing airlines. n passengers each select 1 of the 2 plans
at random. Number of passengers in plane one

S ∼ Bin[n,
1
2
]

Suppose each plane has s seats and let

f(s) = P(S ≤ s)
S − np
√

npq
' n[0, 1]

f(s) = P
(

S − 1
2n

1
2

√
n

≤
s− 1

2n
1
2

√
n

)
= 1− Φ

(
2s− n√

n

)
therefore ifn = 1000 ands = 537 thenf(s) = 0.01. Planes hold 1074 seats only 74
in excess.
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Example. An unknown fraction of the electorate, p, vote labour. It is desired to find p
within an error no exceeding 0.005. How large should the sample be.

Let the fraction of labour votes in the sample bep
′
. We can never be certain (with-

out complete enumeration), that
∣∣∣p− p

′
∣∣∣ ≤ 0.005. Instead choose n so that the event∣∣∣p− p

′
∣∣∣ ≤ 0.005 have probability≥ 0.95.

P
(∣∣∣p− p

′
∣∣∣ ≤ 0.005

)
= P(|Sn − np| ≤ 0.005n)

= P
(
|Sn − np|
√

npq
≤ 0.005

√
n√

n

)

Choose n such that the probability is≥ 0.95.

∫ 1.96

−1.96

1√
2π

e
−x2

2 dx = 2Φ(1.96)− 1

We must choose n so that

0.005
√

n√
n

≥ 1.96

But we don’t knowp. Butpq ≤ 1
4 with the worst casep = q = 1

2

n ≥ 1.962

0.0052

1
4
' 40, 000

If we replace 0.005 by 0.01 then ≥ 10, 000 will be sufficient. And is we replace 0.005
by 0.045 thenn ≥ 475 will suffice.

NoteAnswer does not depend upon the total population.
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6.5 Multivariate normal distribution

Let x1, . . . , Xn be iidN [0, 1] random variables with joint densityg(x1, . . . xn)

g(x1, . . . xn) =
n∏

i=1

1√
2π

e
−x2

i
2

=
1

(2π)
n
2

e
−1
2

Pn
i=1 x2

i

=
1

(2π)
n
2

e
−1
2 ~x∧~x

Write

~X =


X1

X2

...
Xn


and let~z = ~µ + A ~X whereA is an invertible matrix

(
~x = A−1(~x− ~µ)

)
. Density of~z

f(z1, . . . , zn) =
1

(2π)
n
2

1
detA

e
−1
2 (A−1(~z−~µ))T (A−1(~z−~µ))

=
1

(2π)
n
2 |Σ|

1
2
e
−1
2 (~z−~µ)T Σ−1(~z−~µ)

whereΣAAT . This is the multivariate normal density

~z ∼ MV N [~µ, Σ]

Cov(zi, zj) = E[(zi − µi)(zj − µj)]

But this is the(i, j) entry of

E
[
(~z − ~µ)(~z − ~µ)T

]
= E

[
(A ~X)(A ~X)T

]
= AE

[
XXT

]
AT

= AIAT = AAT = Σ Covariance matrix

If the covariance matrix of the MVN distribution is diagonal, then the components of
the random vector~z are independent since

f(z1, . . . , zn) =
n∏

i=1

1
(2π)

1
2 σi

e
−1
2

“
zi−µi

σi

”2

Where

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
...

...
0 0 . . . σ2

n


Not necessarily true if the distribution is no MVN recall sheet 2 question 9.
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Example (bivariate normal).

f(x1, x2) =
1

2π(1− p2)
1
2 σ1σ2

×

exp

[
− 1

2(1− p2)

[(
x1 − µ1

σ1

)2

−

2p

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(

x1 − µ1

σ1

)2
]]

σ1, σ2 ≤ 0 and−1 ≤ p ≤ +1. Joint distribution of abivariate normal random
variable.

Example. An example with

Σ−1 =
1

1− p2

(
σ2

1 pσ−1
1 σ−1

2

pσ−1
1 σ−1

2 σ2
2

)

Σ =
(

σ2
1 pσ1σ2

pσ1σ2 σ2
2

)
E[Xi] = µi andVarXi = σ2

i . Cov(X1, X2) = σ1σ2p.

Correlation(X1, X2) =
Cov(X1, X2)

σ1σ2
= p
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