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Chapter 1

Integers

Notation. The “natural numbers”, which we will denote by N, are

{1, 2, 3, . . . }.

The integers Z are

{. . . ,−2,−1, 0, 1, 2, . . . }.

We will also use the non-negative integers, denoted either by N0 or Z+, which is N ∪
{0}. There are also the rational numbers Q and the real numbers R.

Given a set S, we write x ∈ S if x belongs to S, and x /∈ S otherwise.

There are operations + and · on Z. They have certain “nice” properties which we
will take for granted. There is also “ordering”. N is said to be “well-ordered”, which
means that every non-empty subset of N has a least element. The principle of induction
follows from well-ordering.

Proposition (Principle of Induction). Let P (n) be a statement about n for each n ∈ N.
Suppose P (1) is true and P (k) true implies that P (k+1) is true for each k ∈ N. Then
P is true for all n.

Proof. Suppose P is not true for all n. Then consider the subset S of N of all numbers
k for which P is false. Then S has a least element l. We know that P (l − 1) is true
(since l > 1), so that P (l) must also be true. This is a contradiction and P holds for all
n.

1.1 Division

Given two integers a, b ∈ Z, we say that a divides b (and write a | b) if a 6= 0 and
b = a · q for some q ∈ Z (a is a divisor of b). a is a proper divisor of b if a is not ±1
or ±b.

Note. If a | b and b | c then a | c, for if b = q1a and c = q2b for q1, q2 ∈ Z then
c = (q1 ·q2)a. If d | a and d | b then d | ax+ by. The proof of this is left as an exercise.

1
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1.2 The division algorithm
Lemma 1.1. Given a, b ∈ N there exist unique integers q, r ∈ N with a = qb + r,
0 ≤ r < b.

Proof. Take q the largest possible such that qb ≤ a and put r = a−qb. Then 0 ≤ r < b
since a− qb ≥ 0 but (q + 1)b ≥ a. Now suppose that a = q1b + r with q1, r1 ∈ N and
0 ≤ r1 < b. Then 0 = (q − q1)b + (r − r1) and b | r − r1. But −b < r − r1 < b so
that r = r1 and hence q = q1.

It is clear that b | a iff r = 0 in the above.

Definition. Given a, b ∈ N then d ∈ N is the highest common factor (greatest common
divisor) of a and b if:

1. d | a and d | b,

2. if d′ | a and d′ | b then d′ | d (d′ ∈ N).

The highest common factor (henceforth hcf) of a and b is written (a, b) or hcf(a, b).
The hcf is obviously unique — if c and c′ are both hcf’s then they both divide each

other and are therefore equal.

Theorem 1.1 (Existance of hcf). For a, b ∈ N hcf(a, b) exists. Moreover there exist
integers x and y such that (a, b) = ax + by.

Proof. Consider the set I = {ax + by : x, y ∈ Z and ax + by > 0}. Then I 6= ∅ so let
d be the least member of I . Now ∃x0, y0 such that d = ax0 + by0, so that if d′ | a and
d′ | b then d′ | d.

Now write a = qd + r with q, r ∈ N0, 0 ≤ r < d. We have r = a − qd =
a(1−qx0)+b(−qy0). So r = 0, as otherwise r ∈ I: contrary to d minimal. Similiarly,
d | b and thus d is the hcf of a and b.

Lemma 1.2. If a, b ∈ N and a = qb + r with q, r ∈ N0 and 0 ≤ r < b then
(a, b) = (b, r).

Proof. If c | a and c | b then c | r and thus c | (b, r). In particular, (a, b) | (b, r). Now
note that if c | b and c | r then c | a and thus c | (a, b). Therefore (b, r) | (a, b) and
hence (b, r) = (a, b).

1.3 The Euclidean algorithm
Suppose we want to find (525, 231). We use lemmas (1.1) and (1.2) to obtain:

525 = 2× 231 + 63
231 = 3× 63 + 42
63 = 1× 42 + 21
42 = 2× 21 + 0

So (525, 231) = (231, 63) = (63, 42) = (42, 21) = 21. In general, to find (a, b):
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a = q1b + r1 with 0 < r1 < b

b = q2r1 + r2 with 0 < r2 < r1

r1 = q3r2 + r3 with 0 < r3 < r2

...
ri−2 = qiri−1 + ri with 0 < ri < ri−1

...
rn−3 = qn−1rn−2 + rn−1 with 0 < rn < rn−1

rn−2 = qnrn−1 + 0.

This process must terminate as b > r1 > r2 > · · · > rn−1 > 0. Using Lemma
(1.2), (a, b) = (b, r1) = · · · = (rn−2, rn−1) = rn−1. So (a, b) is the last non-zero
remainder in this process.

We now wish to find x0 and y0 ∈ Z with (a, b) = ax0 + by0. We can do this by
backsubstitution.

21 = 63− 1× 42
= 63− (231− 3× 63)
= 4× 63− 231
= 4× (525− 2× 231)− 231
= 4× 525− 9× 231.

This works in general but can be confusing and wasteful. These numbers can be
calculated at the same time as (a, b) if we know we shall need them.

We introduce Ai and Bi. We put A−1 = B0 = 0 and A0 = B−1 = 1. We
iteratively define

Ai = qiAi−1 + Ai−2

Bi = qiBi−1 + Bi−2.

Now consider aBj − bAj .

Lemma 1.3.
aBj − bAj = (−1)j+1rj .

Proof. We shall do this using strong induction. We can easily see that (1.3) holds for
j = 1 and j = 2. Now assume we are at i ≥ 2 and we have already checked that
ri−2 = (−1)i−1(aBi−2 − bAi−2) and ri−i = (−1)i(aBi−1 − bAi−1). Now

ri = ri−2 − qiri−1

= (−1)i−1(aBi−2 − bAi−2)− qi(−1)i(aBi−1 − bAi−1)

= (−1)i+1(aBi − bAi), using the definition of Ai and Bi.
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Lemma 1.4.
AiBi+1 −Ai+1Bi = (−1)i

Proof. This is done by backsubstitution and using the definition of Ai and Bi.

An immediate corollary of this is that (Ai, Bi) = 1.

Lemma 1.5.

An =
a

(a, b)
Bn =

b

(a, b)
.

Proof. (1.3) for i = n gives aBn = bAn. Therefore a
(a,b)Bn = b

(a,b)An. Now a
(a,b)

and b
(a,b) are coprime. An and Bn are coprime and thus this lemma is therefore an

immediate consequence of the following theorem.

Theorem 1.2. If d | ce and (c, d) = 1 then d | e.

Proof. Since (c, d) = 1 we can write 1 = cx + dy for some x, y ∈ Z. Then e =
ecx + edy and d | e.

Definition. The least common multiple (lcm) of a and b (written [a, b]) is the integer l
such that

1. a | l and b | l,

2. if a | l′ and b | l′ then l | l′.

It is easy to show that [a, b] = ab
(a,b) .

1.4 Applications of the Euclidean algorithm

Take a, b and c ∈ Z. Suppose we want to find all the solutions x, y ∈ Z of ax+by = c.
A necessary condition for a solution to exist is that (a, b) | c, so assume this.

Lemma 1.6. If (a, b) | c then ax + by = c has solutions in Z.

Proof. Take x′ and y′ ∈ Z such that ax′ + by′ = (a, b). Then if c = q(a, b) then if
x0 = qx′ and y0 = qy′, ax0 + by0 = c.

Lemma 1.7. Any other solution is of the form x = x0 + bk
(a,b) , y = y0 − ak

(a,b) for
k ∈ Z.

Proof. These certainly work as solutions. Now suppose x1 and y1 is also a solution.
Then a

(a,b) (x0 − x1) = − b
(a,b) (y0 − y1). Since a

(a,b) and b
(a,b) are coprime we have

a
(a,b) | (y0 − y1) and b

(a,b) | (x0 − x1). Say that y1 = y0 − ak
(a,b) , k ∈ Z. Then

x1 = x0 + bk
(a,b) .
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1.4.1 Continued Fractions
We return to 525 and 231. Note that

535
231

= 2 +
63
231

= 2 +
1

231
63

= 2 +
1

3 + 42
63

= 2 +
1

3 + 1
1+ 1

2

.

Notation.
535
231

= 2 +
1

3+
1

1+
1
2

= [2, 3, 1, 2] = 2; 3, 1, 2.

Note that 2, 3, 1 and 2 are just the qi’s in the Euclidean algorithm. The rational
a
b > 0 is written as a continued fraction

a

b
= q1 +

1
q2+

1
q3+

. . .
1
qn

,

with all the qi ∈ N0, qi ≥ 1 for 1 < i < n and qn ≥ 2.

Lemma 1.8. Every rational a
b with a and b ∈ N has exactly one expression in this

form.

Proof. Existance follows immediately from the Euclidean algorithm. As for unique-
ness, suppose that

a

b
= p1 +

1
p2+

1
p3+

. . .
1

pm

with the pi’s as before. Firstly p1 = q1 as both are equal to ba
b c. Since 1

p2+
1

...

< 1 then

(a

b
− p1

)−1

= p2 +
1

p3 + 1
...

=
(a

b
− q1

)−1

= q2 +
1

q3 + 1
...

.

Thus p2 = q2 and so on.

Now, suppose that given [q1, q2, . . . , qn] we wish to find a
b equal to it. Then we

work out the numbers Ai and Bi as in the Euclidean algorithm. Then a
b = An

Bn
by

lemma (1.3).
If we stop doing this after i steps we get Ai

Bi
= [q1, q2, . . . , qi]. The numbers Ai

Bi
are

called the “convergents” to a
b .

Using lemma (1.4), we get that Ai

Bi
− Ai−1

Bi−1
= (−1)i

Bi−1Bi
. Now the Bi are strictly

increasing, so the gaps are getting smaller and the signs alternate. We get

A1

B1
<

A3

B3
< · · · < a

b
< · · · < A4

B4
<

A2

B2
.

The approximations are getting better and better; in fact
∣∣∣Ai

Bi
− a

b

∣∣∣ ≤ 1
BiBi+1

.

∗ — Continued fractions for irrationals

This can also be done for irrationals, but the continued fractions become infinite. For
instance we can get approximations to π using the calculator. Take the integral part,
print, subtract it, invert and repeat. We get π = [3, 7, 15, 1, . . . ]. The convergents are
3, 22

7 and 333
106 . We are already within 10−4 of π. There is a good approximation as Bi

increases. As an exercise, show that
√

2 = [1, 2, 2, 2, . . . ].
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1.5 Complexity of Euclidean Algorithm

Given a and b, how many steps does it take to find (a, b). The Euclidean algorithm is
good.

Proposition. The Euclidean algorithm will find (a, b), a > b in fewer than 5d(b) steps,
where d(b) is the number of digits of b in base 10.

Proof. We look at the worst case scenario. What are the smallest numbers needing n
steps. In this case qi = 1 for 1 ≤ i < n and qn = 2. Using these qi’s to calculate An

and Bn we find the Fibonacci numbers, that is the numbers such that F1 = F2 = 1,
Fi+2 = Fi+1 + Fi. We get An = Fn+2 and Bn = Fn+1. So if b < Fn+1 then fewer
than n steps will do. If b has d digits then

b ≤ 10d − 1 ≤ 1√
5

(
1 +

√
5

2

)5d+2

− 1 < F5d+2,

as

Fn =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]
. This will be shown later.

1.6 Prime Numbers

A natural number p is a prime iff p > 1 and p has no proper divisors.

Theorem 1.3. Any natural number n > 1 is a prime or a product of primes.

Proof. If n is a prime then we are finished. If n is not prime then n = n1 · n2 with n1

and n2 proper divisors. Repeat with n1 and n2.

Theorem 1.4 (Euclid). There are infinitely many primes.

Proof. Assume not. Then let p1, p2, . . . , pn be all the primes. Form the number N =
p1p2 . . . pn +1. Now N is not divisible by any of the pi — but N must either be prime
or a product of primes, giving a contradiction.

This can be made more precise. The following argument of Erdös shows that the kth

smallest prime pk satisfies pk ≤ 4k−1 + 1. Let M be an integer such that all numbers
≤ M can be written as the product of the powers of the first k primes. So any such
number can be written

m2pi1
1 pi2

2 . . . pik

k ,

with i1, . . . , ik ∈ {0, 1}. Now m ≤
√

M , so there are at most
√

M 2k possible num-
bers less than M . Hence M ≤ 2k

√
M , or M ≤ 4k. Hence pk+1 ≤ 4k + 1.

A much deeper result (which will not be proved in this course!) is the Prime Num-
ber Theorem, that pk ∼ k log k.
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1.6.1 Uniqueness of prime factorisation
Lemma 1.9. If p | ab, a, b ∈ N then p | a and/or p | b.

Proof. If p - a then (p, a) = 1 and so p | b by theorem (1.2).

Theorem 1.5. Every natural number > 1 has a unique expression as the product of
primes.

Proof. The existence part is theorem (1.3). Now suppose n = p1p2 . . . pk = q1q2 . . . ql

with the pi’s and qj’s primes. Then p1 | q1 . . . ql, so p1 = qj for some j. By renumber-
ing (if necessary) we can assume that j = 1. Now repeat with p2 . . . pk and q2 . . . ql,
which we know must be equal.

There are perfectly nice algebraic systems where the decomposition into primes
is not unique, for instance Z

[√
−5
]

= {a + b
√
−5 : a, b ∈ Z}, where 6 = (1 +√

−5)(1 −
√
−5) = 2 × 3 and 2, 3 and 1 ±

√
−5 are each “prime”. Or alternatively,

2Z = {all even numbers}, where “prime” means “not divisible by 4”.

1.7 Applications of prime factorisation
Lemma 1.10. If n ∈ N is not a square number then

√
n is irrational.

Proof. Suppose
√

n = a
b , with (a, b) = 1. Then nb2 = a2. If b > 1 then let p be a

prime dividing b. Thus p | a2 and so p | a, which is impossible as (a, b) = 1. Thus
b = 1 and n = a2.

This lemma can also be stated: “if n ∈ N with
√

n ∈ Q then
√

n ∈ N”.

Definition. A real number θ is algebraic if it satisfies a polynomial equation with
coefficients in Z.

Real numbers which are not algebraic are transcendental (for instance π and e).
Most reals are transcendental.

If the rational a
b ( with (a, b) = 1 ) satisfies a polynomial with coefficients in Z

then
cnan + cn−1a

n−1b + . . . bnc0 = 0

so b | cn and a | c0. In particular if cn = 1 then b = 1, which is stated as “algebraic
integers which are rational are integers”.

Note that if a = pα1
1 pα2

2 . . . pαk

k and b = pβ1
1 pβ2

2 . . . pβk

k with αi, βi ∈ N0 then
(a, b) = pγ1

1 pγ2
2 . . . pγk

k and [a, b] = pδ1
1 pδ2

2 . . . pδk

k , γi = min{αi, βi} and δi =
max{αi, βi}.

Major open problems in the area of prime numbers are the Goldbach conjecture
(“every even number greater than two is the sum of two primes”) and the twin primes
conjecture (“there are infinitely many prime pairs p and p + 2”).

1.8 Modular Arithmetic
Definition. If a and b ∈ Z, m ∈ N we say that a and b are “congruent mod(ulo) m”
if m | a− b. We write a ≡ b (mod m).

It is a bit like = but less restrictive. It has some nice properties:
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• a ≡ a (mod m),

• if a ≡ b (mod m) then b ≡ a (mod m),

• if a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

Also, if a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m)

• a1 + a2 ≡ b1 + b2 (mod m),

• a1a2 ≡ b1a2 ≡ b1b2 (mod m).

Lemma 1.11. For a fixed m ∈ N, each integer is congruent to precisely one of the
integers

{0, 1, . . . ,m− 1}.

Proof. Take a ∈ Z. Then a = qm + r for q, r ∈ Z and 0 ≤ r < m. Then a ≡ r
(mod m).

If 0 ≤ r1 < r2 < m then 0 < r2 − r1 < m, so m - r2 − r1 and thus r1 6≡ r2

(mod m).

Example. No integer congruent to 3 (mod 4) is the sum of two squares.

Solution. Every integer is congruent to one of 0, 1, 2, 3 (mod 4). The square of any
integer is congruent to 0 or 1 (mod 4) and the result is immediate.

Similarly, using congruence modulo 8, no integer congruent to 7 (mod 8) is the
sum of 3 squares.

1.9 Solving Congruences

We wish to solve equations of the form ax ≡ b (mod m) given a, b ∈ Z and m ∈ N
for x ∈ Z. We can often simplify these equations, for instance 7x ≡ 3 (mod 5)
reduces to x ≡ 4 (mod 5) (since 21 ≡ 1 and 9 ≡ 4 (mod 5)).

This equations are not always soluble, for instance 6x ≡ 4 (mod 9), as 9 - 6x− 4
for any x ∈ Z.

How to do it

The equation ax ≡ b (mod m) can have no solutions if (a,m) - b since then m - ax−b
for any x ∈ Z. So assume that (a,m) | b.

We first consider the case (a,m) = 1. Then we can find x0 and y0 ∈ Z such
that ax0 + my0 = b (use the Euclidean algorithm to get x′ and y′ ∈ Z such that
ax′ + my′ = 1). Then put x0 = bx′ so ax0 ≡ b (mod m). Any other solution is
congruent to x0 (mod m), as m | a(x0 − x1) and (a,m) = 1.

So if (a,m) = 1 then a solution exists and is unique modulo m.
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1.9.1 Systems of congruences
We consider the system of equations

x ≡ a mod m

x ≡ b mod n.

Our main tool will be the Chinese Remainder Theorem.

Theorem 1.6 (Chinese Remainder Theorem). Assume m,n ∈ N are coprime and let
a, b ∈ Z. Then ∃x0 satisfying simultaneously x0 ≡ a (mod m) and x0 ≡ b (mod n).
Moreover the solution is unique up to congruence modulo mn.

Proof. Write cm + dn = 1 with m,n ∈ Z. Then cm is congruent to 0 modulo m
and 1 modulo n. Similarly dn is congruent to 1 modulo m and 0 modulo n. Hence
x0 = adn + bcm satifies x0 ≡ a (mod m) and x0 ≡ b (mod n). Any other solution
x1 satisfies x0 ≡ x1 both modulo m and modulo n, so that since (m,n) = 1, mn |
x0 − x1 and x1 ≡ x0 (mod mn).

Finally, if 1 < (a,m) then replace the congruence with one obtained by dividing
by (a,m) — that is consider

a

(a,m)
x ≡ b

(a,m)
mod

m

(a,m)
.

Theorem 1.7. If p is a prime then (p− 1)! ≡ −1 (mod p).

Proof. If a ∈ N, a ≤ p − 1 then (a, p) = 1 and there is a unique solution of ax ≡ 1
(mod p) with x ∈ N and x ≤ p−1. x is the inverse of a modulo p. Observe that a = x
iff a2 ≡ 1 (mod p), iff p | (a + 1)(a− 1), which gives that a = 1 or p− 1. Therefore
the elements in {2, 3, 4, . . . , p − 2} pair off so that 2 × 3 × 4 × · · · × (p − 2) ≡ 1
(mod p) and the theorem is proved.

1.10 Euler’s Phi Function
Definition. For m ∈ N, define φ(m) to be the number of nonnegative integers less
than m which are coprime to m.

φ(1) = 1. If p is prime then φ(p) = p− 1 and φ(pa) = pa
(
1− 1

p

)
.

Lemma 1.12. If m,n ∈ N with (m,n) = 1 then φ(mn) = φ(m)φ(n). φ is said to be
multiplicative.

Let Um = {x ∈ Z : 0 ≤ x < m, (x,m) = 1, the reduced set of residues or set of
invertible elements. Note that φ(m) = |Um|.

Proof. If a ∈ Um and b ∈ Un then there exists a unique x ∈ Umn. with c ≡ a
(mod m) and c ≡ b (mod n) (by theorem (1.6)). Such a c is prime to mn, since it is
prime to m and to n. Conversely, any c ∈ Umn arises in this way, from the a ∈ Um

and b ∈ Un such that a ≡ c (mod m), b ≡ c (mod n). Thus |Umn| = |Um| |Un| as
required.
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An immediate corollary of this is that for any n ∈ N,

φ(n) = n
∏
p|n

p prime

(
1− 1

p

)
.

Theorem 1.8 (Fermat-Euler Theorem). Take a, m ∈ N such that (a,m) = 1. Then
aφ(m) ≡ 1 (mod m).

Proof. Multiply each residue ri by a and reduce modulo m. The φ(m) numbers
thus obtained are prime to m and are all distinct. So the φ(m) new numbers are just
r1, . . . , rφ(m) in a different order. Therefore

r1r2 . . . rφ(m) ≡ ar1ar2 . . . arφ(m) (mod m)

≡ aφ(m)r1r2 . . . rφ(m) (mod m).

Since (m, r1r2 . . . rφ(m)) = 1 we can divide to obtain the result.

Corollary (Fermat’s Little Theorem). If p is a prime and a ∈ Z such that p - a then
ap−1 ≡ 1 (mod p).

This can also be seen as a consequence of Lagrange’s Theorem, since Um is a group
under multiplication modulo m.

Fermat’s Little Theorem can be used to check that n ∈ N is prime. If ∃a coprime
to n such that an−1 6≡ 1 (mod n) then n is not prime.

1.10.1 Public Key Cryptography
Private key cryptosystems rely on keeping the encoding key secret. Once it is known
the code is not difficult to break. Public key cryptography is different. The encoding
keys are public knowledge but decoding remains “impossible” except to legitimate
users. It is usually based of the immense difficulty of factorising sufficiently large
numbers. At present 150 – 200 digit numbers cannot be factorised in a lifetime.

We will study the RSA system of Rivest, Shamir and Adleson. The user A (for
Alice) takes two large primes pA and qA with > 100 digits. She obtains NA = pAqA

and chooses at random ρA such that (ρA, φ(NA)) = 1. We can ensure that pA − 1 and
qA − 1 have few factors. Now A publishes the pair NA and ρA.

By some agreed method B (for Bob) codes his message for Alice as a sequence of
numbers M < NA. Then B sends A the number MρA (mod NA). When Alice wants
to decode the message she chooses dA such that dAρA ≡ 1 (mod φ)(NA). Then
MρAdA ≡ M (mod NA) since Mφ(NA) ≡ 1. No-one else can decode messages to
Alice since they would need to factorise NA to obtain φ(NA).

If Alice and Bob want to be sure who is sending them messages, then Bob could
send Alice EA(DB(M)) and Alice could apply EBDA to get the message — if it’s
from Bob.



Chapter 2

Induction and Counting

2.1 The Pigeonhole Principle
Proposition (The Pigeonhole Principle). If nm + 1 objects are placed into n boxes
then some box contains more than m objects.

Proof. Assume not. Then each box has at most m objects so the total number of objects
is nm — a contradiction.

A few examples of its use may be helpful.

Example. In a sequence of at least kl+1 distinct numbers there is either an increasing
subsequence of length at least k+1 or a decreasing subsequence of length at least l+1.

Solution. Let the sequence be c1, c2, . . . , ckl+1. For each position let ai be the length
of the longest increasing subsequence starting with ci. Let dj be the length of the
longest decreasing subsequence starting with cj . If ai ≤ k and di ≤ l then there are
only at most kl distinct pairs (ai, dj). Thus we have ar = as and dr = ds for some
1 ≤ r < s ≤ kl + 1. This is impossible, for if cr < cs then ar > as and if cr > cs

then dr > ds. Hence either some ai > k or dj > l.

Example. In a group of 6 people any two are either friends or enemies. Then there are
either 3 mutual friends or 3 mutual enemies.

Solution. Fix a person X . Then X has either 3 friends or 3 enemies. Assume the
former. If a couple of friends of X are friends of each other then we have 3 mutual
friends. Otherwise, X’s 3 friends are mutual enemies.

Dirichlet used the pigeonhole principle to prove that for any irrational α there are
infinitely many rationals p

q satisfying
∣∣∣α− p

q

∣∣∣ < 1
q2 .

2.2 Induction
Recall the well-ordering axiom for N0: that every non-empty subset of N0 has a least
element. This may be stated equivalently as: “there is no infinite descending chain in
N0”. We also recall the (weak) principle of induction from before.

11
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Proposition (Principle of Induction). Let P (n) be a statement about n for each n ∈
N0. Suppose P (k0) is true for some k0 ∈ N0 and P (k) true implies that P (k + 1) is
true for each k ∈ N. Then P (n) is true for all n ∈ N0 such that n ≥ k0.

The favourite example is the Tower of Hanoi. We have n rings of increasing radius
and 3 vertical rods (A, B and C) on which the rings fit. The rings are initially stacked
in order of size on rod A. The challenge is to move the rings from A to B so that a
larger ring is never placed on top of a smaller one.

We write the number of moves required to move n rings as Tn and claim that
Tn = 2n− 1 for n ∈ N0. We note that T0 = 0 = 20− 1, so the result is true for n = 0.

We take k > 0 and suppose we have k rings. Now the only way to move the largest
ring is to move the other k − 1 rings onto C (in Tk−1 moves). We then put the largest
ring on rod B (in 1 move) and move the k−1 smaller rings on top of it (in Tk−1 moves
again). Assume that Tk−1 = 2k−1 − 1. Then Tk = 2Tk−1 + 1 = 2k − 1. Hence the
result is proven by the principle of induction.

2.3 Strong Principle of Mathematical Induction
Proposition (Strong Principle of Induction). If P (n) is a statement about n for each
n ∈ N0, P (k0) is true for some k0 ∈ N0 and the truth of P (k) is implied by the truth
of P (k0), P (k0 + 1), . . . , P (k− 1) then P (n) is true for all n ∈ N0 such that n ≥ k0.

The proof is more or less as before.

Example (Evolutionary Trees). Every organism can mutate and produce 2 new ver-
sions. Then n mutations are required to produce n + 1 end products.

Proof. Let P (n) be the statement “n mutations are required to produce n + 1 end
products”. P0 is clear. Consider a tree with k + 1 end products. The first mutation (the
root) produces 2 trees, say with k1 + 1 and k2 + 1 end products with k1, k2 < k. Then
k + 1 = k1 + 1 + k2 + 1 so k = k1 + k2 + 1. If both P (k1) and P (k2) are true then
there are k1 mutations on the left and k2 on the right. So in total we have k1 + k2 + 1
mutations in our tree and P (k) is true is P (k1) and P (k2) are true. Hence P (n) is true
for all n ∈ N0.

2.4 Recursive Definitions
(Or in other words) Defining f(n), a formula or functions, for all n ∈ N0 with n ≥ k0

by defining f(k0) and then defining for k > k0, f(k) in terms of f(k0), f(k0 + 1),
. . . , f(k − 1).

The obvious example is factorials, which can be defined by n! = n(n − 1)! for
n ≥ 1 and 0! = 1.

Proposition. The number of ways to order a set of n points is n! for all n ∈ N0.

Proof. This is true for n = 0. So, to order an n-set, choose the 1st element in n ways
and then order the remaining n− 1-set in (n− 1)! ways.

Another example is the Ackermann function, which appears on example sheet 2.



2.5. SELECTION AND BINOMIAL COEFFICIENTS 13

2.5 Selection and Binomial Coefficients
We define a set of polynomials for m ∈ N0 as

xm = x(x− 1)(x− 2) . . . (x−m + 1),

which is pronounced “x to the m falling”. We can do this recursively by x0 = 1 and
xm = (x−m + 1)xm−1 for m > 0. We also define “x to the m rising” by

xm = x(x + 1)(x + 2) . . . (x + m− 1).

We further define
(

x
m

)
(read “x choose m”) by(

x

m

)
=

xm

m!
.

It is also convienient to extend this definition to negative m by
(

x
m

)
= 0 if m < 0,

m ∈ Z. By fiddling a little, we can see that for n ∈ N, n ≥ m(
n

m

)
=

n!
m!(n−m)!

.

Proposition. The number of k-subsets of a given n-set is
(
n
k

)
.

Proof. We can choose the first element to be included in our k-subset in n ways, then
then next in n − 1 ways, down to the kth which can be chosen in n − k + 1 ways.
However, ordering of the k-subset is not important (at the moment), so divide nk

k! to get
the answer.

Theorem 2.1 (The Binomial Theorem). For a and b ∈ R, n ∈ N0 then

(a + b)n =
∑

k

(
n

k

)
akbn−k.

There are many proofs of this fact. We give one and outline a second.

Proof. (a+b)n = (a+b)(a+b) . . . (a+b), so the coefficient of akbn−k is the number
of k-subsets of an n-set — so the coefficient is

(
n
k

)
.

Proof. This can also be done by induction on n, using the fact that(
n

k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
.

There are a few conseqences of the binomial expansion.

1. For m,n ∈ N0 and n ≥ m,
(

n
m

)
∈ N0 so m! divides the product of any m

consecutive integers.

2. Putting a = b = 1 in the binomial theorem gives 2n =
∑

k

(
n
k

)
— so the number

of subsets of an n-set is 2n. There are many proofs of this fact. An easy one is
by induction on n. Write Sn for the total number of subsets of an n-set. Then
S0 = 1 and for n > 0, Sn = 2Sn−1. (Pick a point in the n-set and observe that
there are Sn−1 subsets not containing it and Sn−1 subsets containing it.
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3. (1 − 1)n = 0 =
∑

k

(
n
k

)
(−1)k — so in any finite set the number of subsets of

even sizes equals the number of subsets of odd sizes.

It also gives us another proof of Fermat’s Little Theorem: if p is prime then ap ≡ a
(mod p) for all a ∈ N0.

Proof. It is done by induction on a. It is obviously true when a = 0, so take a > 0 and
assume the theorem is true for a− 1. Then

ap = ((a− 1) + 1)p

≡ (a− 1)p + 1 mod p as
(

p

k

)
≡ 0 (mod p) unless k = 0 or k = p

≡ a− 1 + 1 mod p

≡ a mod p

2.5.1 Selections
The number of ways of choosing m objects out of n objects is

ordered unordered
no repeats nm

(
n
m

)
repeats nm

(
n−m+1

m

)
The only entry that needs justification is

(
n−m+1

m

)
. But there is a one-to-one cor-

respondance betwen the set of ways of choosing m out of n unordered with possible
repeats and the set of all binary strings of length n + m − 1 with m zeros and n − 1
ones. For suppose there are mi occurences of element i, mi ≥ 0. Then

n∑
i=1

mi = m ↔ 0 . . . 0︸ ︷︷ ︸
m1

1 0 . . . 0︸ ︷︷ ︸
m2

1 . . . 1 0 . . . 0︸ ︷︷ ︸
mn

.

There are
(
n−m+1

m

)
such strings (choosing where to put the 1’s).

2.5.2 Some more identities
Proposition. (

n

k

)
=
(

n

n− k

)
n ∈ N0, k ∈ Z

Proof. For: choosing a k-subset is the same as choosing an n− k-subset to reject.

Proposition. (
n

k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
n ∈ N0, k ∈ Z

Proof. This is trivial if n < 0 or k ≤ 0, so assume n ≥ 0 and k > 0. Choose a special
element in the n-set. Any k-subset will either contain this special element (there are(
n−1
k−1

)
such) or not contain it (there are

(
n−1

k

)
such).

In fact
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Proposition. (
x

k

)
=
(

x− 1
k − 1

)
+
(

x− 1
k

)
k ∈ Z

Proof. Trivial if k < 0, so let k ≥ 0. Both sides are polynomials of degree k and are
equal on all elements of N0 and so are equal as polynomials as a consequence of the
Fundamental Theorem of Algebra. This is the “polynomial argument”.

This can also be proved from the definition, if you want to.

Proposition. (
x

m

)(
m

k

)
=
(

x

k

)(
x− k

m− k

)
m, k ∈ Z.

Proof. If k < 0 or m < k then both sides are zero. Assume m ≥ k ≥ 0. Assume
x = n ∈ N (the general case follows by the polynomial argument). This is “choosing
a k-subset contained in an m-subset of a n-set”.

Proposition. (
x

k

)
=

x

k

(
x− 1
k − 1

)
k ∈ Z \ {0}

Proof. We may assume x = n ∈ N and k > 0. This is “choosing a k-team and its
captain”.

Proposition. (
n + 1
m + 1

)
=

n∑
k=0

(
k

m

)
, m, n ∈ N0

Proof. For(
n + 1
m + 1

)
=
(

n

m

)
+
(

n

m + 1

)
=
(

n

m

)
+
(

n− 1
m

)
+
(

n− 1
m + 1

)
and so on.

A consequence of this is that
∑n

k=1 km = 1
m+1 (n + 1)m+1, which is obtained by

multiplying the previous result by m!. This can be used to sum
∑n

k=1 km.

Proposition. (
r + s

m + n

)
=
∑

k

(
r

m + k

)(
s

n− k

)
r, s,m, n ∈ Z

Proof. We can replace n by m+n and k by m+k and so we may assume that m = 0.
So we have to prove:(

r + s

n

)
=
∑

k

(
r

k

)(
s

n− k

)
r, s, n ∈ Z.

Take an (r + s)-set and split it into an r-set and an s-set. Choosing an n-subset
amounts to choosing a k-subset from the r-set and an (n− k)-subset from the s-set for
various k.
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2.6 Special Sequences of Integers

2.6.1 Stirling numbers of the second kind
Definition. The Stirling number of the second kind, S(n, k), n, k ∈ N0 is defined as the
number of partitions of {1, . . . , n} into exactly k non-empty subsets. Also S(n, 0) = 0
if n > 0 and 1 if n = 0.

Note that S(n, k) = 0 if k > n, S(n, n) = 1 for all n, S(n, n − 1) =
(
n
2

)
and

S(n, 2) = 2n−1 − 1.

Lemma 2.1. A recurrence: S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Proof. In any partition of {1, . . . , n}, the element n is either in a part on its own (S(n−
1, k − 1) such) or with other things (kS(n− 1, k) such).

Proposition. For n ∈ N0, xn =
∑

k S(n, k)xk.

Proof. Proof is by induction on n. It is clearly true when n = 0, so take n > 0 and
assume the result is true for n− 1. Then

xn = xxn−1

= x
∑

k

S(n− 1, k)xk

=
∑

k

S(n− 1, k)xk(x− k + k)

=
∑

k

S(n− 1, k)xk+1 +
∑

k

kS(n− 1, k)xk

=
∑

k

S(n− 1, k − 1)xk +
∑

k

kS(n− 1, k)xk

=
∑

k

S(n, k)xk as required.

2.6.2 Generating Functions
Recall the Fibonacci numbers, Fn such that F1 = F2 = 1 and Fn+2 = Fn+1 + Fn.
Suppose that we wish to obtain a closed formula.

First method

Try a solution of the form Fn = αn. Then we get α2 − α− 1 = 0 and α = 1±
√

5
2 . We

then take

Fn = A

(
1 +

√
5

2

)n

+ B

(
1−

√
5

2

)n

and use the initial conditions to determine A and B. It turns out that

Fn =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]
.



2.6. SPECIAL SEQUENCES OF INTEGERS 17

Note that 1+
√

5
2 > 1 and

∣∣∣ 1−√5
2

∣∣∣ < 1 so the solution grows exponentially. A shorter

form is that Fn is the nearest integer to 1√
5

(
1+
√

5
2

)n

.

Second Method

Or we can form an ordinary generating function

G(z) =
∑
n≥0

Fnzn.

Then using the recurrence for Fn and initial conditions we get that G(z)(1−z−z2) =
z. We wish to find the coefficient of zn in the expansion of G(z) (which is denoted
[zn]G(z)). We use partial fractions and the binomial expansion to obtain the same
result as before.

In general, the ordinary generating function associated with the sequence (an)n∈N0

is G(z) =
∑

n≥0 anzn, a “formal power series”. It is deduced from the recurrence and
the initial conditions.

Addition, subtraction, scalar multiplication, differentiation and integration work as
expected. The new thing is the “product” of two such series:

∑
k≥0

akzk
∑
l≥0

blz
l =

∑
n≥0

cnzn, where cn =
n∑

k=0

akbn−k.

(cn)n∈N0 is the “convolution” of the sequences (an)n∈N0 and (bn)n∈N0 . Some
functional substitution also works.

Any identities give information about the coefficients. We are not concered about
convergence, but within the radius of convergence we get extra information about val-
ues.

2.6.3 Catalan numbers
A binary tree is a tree where each vertex has a left child or a right child or both or
neither. The Catalan number Cn is the number of binary trees on n vertices.

Lemma 2.2.
Cn =

∑
0≤k≤n−1

CkCn−1−k

Proof. On removing the root we get a left subtree of size k and a right subtree of size
n− 1− k for 0 ≤ k ≤ n− 1. Summing over k gives the result.

This looks like a convolution. In fact, it is [zn−1]C(z)2 where

C(z) =
∑
n≥0

Cnzn.

We observe that therefore C(z) = zC(z)2 +1, where the multiplication by z shifts
the coefficients up by 1 and then +1 adjusts for C0. This equation can be solved for
C(z) to get

C(z) =
1±

√
1− 4z

2z
.
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Since C(0) = 1 we must have the − sign. From the binomial theorem

(1− 4z)
1
2 =

∑
k≥0

( 1
2

k

)
(−4)kzk.

Thus Cn = − 1
2

( 1
2

n+1

)
(−4)n+1. Simplifying this we obtain Cn = 1

n+1

(
2n
n

)
and note

the corollary that (n + 1) |
(
2n
n

)
.

Other possible definitions for Cn are:

• The number of ways of bracketing n + 1 variables.

• The number of sequences of length 2n with n each of ±1 such that all partial
sums are non-negative.

2.6.4 Bell numbers
Definition. The Bell number Bn is the number of partitions of {1, . . . , n}.

It is obvious from the definitions that Bn =
∑

k S(n, k).

Lemma 2.3.
Bn+1 =

∑
0≤k≤n

(
n

k

)
Bk

Proof. For, put the element n + 1 in with a k-subset of {1, . . . , n} for k = 0 to k =
n.

There isn’t a nice closed formula for Bn, but there is a nice expression for its
exponential generating function.

Definition. The exponential generating function that is associated with the sequence
(an)n∈N0 is

Â(z) =
∑

n

an

n!
zn.

If we have Â(z) and B̂(z) (with obvious notation) and Â(z)B̂(z) =
∑

n
cn

n! z
n then

cn =
∑

k

(
n
k

)
akbn−k, the exponential convolution of (an)n∈N0 and (bn)n∈N0 .

Hence Bn+1 is the coefficient of zn in the exponential convolution of the sequences
1, 1, 1, 1, . . . and B0, B1, B2, . . . . Thus B̂(z)′ = ezB̂(z). (Shifting is achieved by
differentiation for exponential generating functions.) Therefore B̂(z) = eez+C and
using the condition B̂(0) = 1 we find that C = −1. So

B̂(z) = eez−1.

2.6.5 Partitions of numbers and Young diagrams
For n ∈ N let p(n) be the number of ways to write n as the sum of natural numbers.
We can also define p(0) = 1.

For instance, p(5) = 7:

5 4 + 1 3 + 2 3 + 1 + 1
Notation 5 4 13 3 2 3 12

2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1
Notation 22 1 2 13 15
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These partitions of n are usefully pictured by Young diagrams.

The “conjugate partition” is obtained by taking the mirror image in the main diag-
onal of the Young diagram. (Or in other words, consider columns instead of rows.)

By considering (conjugate) Young diagrams this theorem is immediate.

Theorem 2.2. The number of partions of n into exactly k parts equals the number of
partitions of n with largest part k.

We now define an ordinary generating function for p(n)

P (z) = 1 +
∑
n∈N

p(n)zn.

Proposition.

P (z) =
1

1− z

1
1− z2

1
1− z3

· · · =
∏
k∈N

1
1− zk

.

Proof. The RHS is (1 + z + z2 + . . . )(1 + z2 + z4 + . . . )(1 + z3 + z6 . . . ) . . . .
We get a term zn whenever we select za1 from the first bracket, z2a2 from the

second, z3a3 from the third and so on, and n = a1 +2a2 +3a3 + . . . , or in other words
1a1 2a2 3a3 . . . is a partition of n. There are p(n) of these.

We can similarly prove these results.

Proposition. The generating function Pm(z) of the sequence pm(n) of partitions of n
into at most m parts (or the generating function for the sequence pm(n) of partitions
of n with largest part ≤ m) satisfies

Pm(z) =
1

1− z

1
1− z2

1
1− z3

. . .
1

1− zm
.

Proposition. The generating function for the number of partitions into odd parts is

1
1− z

1
1− z3

1
1− z5

. . . .

Proposition. The generating function for the number of partitions into unequal parts
is

(1 + z)(1 + z2)(1 + z3) . . . .

Theorem 2.3. The number of partitions of n into odd parts equals the number of
partitions of n into unequal parts.
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Proof.

(1 + z)(1 + z2)(1 + z3) . . . =
1− z2

1− z

1− z4

1− z2

1− z6

1− z3
. . .

=
1

1− z

1
1− z3

1
1− z5

. . .

Theorem 2.4. The number of self-conjugate partitions of n equals the number of par-
titions of n into odd unequal parts.

Proof. Consider hooks along the main diagonal like this.

This process can be reversed, so there is a one-to-one correspondance.

2.6.6 Generating function for self-conjugate partitions
Observe that any self-conjugate partition consists of a largest k×k subsquare and twice
a partition of 1

2 (n− k2) into at most k parts. Now

1
(1− z2)(1− z4) . . . (1− z2m)

is the generating function for partitions of n into even parts of size at most 2m, or
alternatively the generating function for partitions of 1

2n into parts of size ≤ m. We
deduce that

zl

(1− z2)(1− z4) . . . (1− z2m)

is the generating function for partitions of 1
2 (n − l) into at most m parts. Hence the

generating function for self-conjugate partitions is

1 +
∑
k∈N

zk2

(1− z2)(1− z4) . . . (1− z2k)
.

Note also that this equals ∏
k∈N0

(1 + z2k+1),

as the number of self-conjugate partitions of n equals the number of partitions of n into
unequal odd parts.

In fact in any partition we can consider the largest k × k subsquare, leaving two
partitions of at most k parts, one of (n−k2−j), the other of j for some j. The number
of these two lots are the coefficients of zn−k2−j and zj in

∏k
i=1

1
1−zi respectively.

Thus

P (z) = 1 +
∑
k∈N

zk2

((1− z)(1− z2) . . . (1− zk))2
.



Chapter 3

Sets, Functions and Relations

3.1 Sets and indicator functions
We fix some universal set S. We write P (S) for the set of all subsets of S — the “power
set” of S. If S is finite with |S| = m (the number of elements), then |P (S)| = 2m.

Given a subset A of S (A ⊆ S) we define the “complement” Ā of A in S as
Ā = {s ∈ S : s /∈ A}.

Given two subsets A, B of S we can define various operations to get new subsets
of S.

A ∩B = {s ∈ S : s ∈ A and s ∈ B}
A ∪B = {s ∈ S : s ∈ A (inclusive) or s ∈ B}
A \B = {s ∈ A : s /∈ B}
A ◦B = {s ∈ S : s ∈ A (exclusive) or s ∈ B} the symmetric difference

= (A ∪B) \ (A ∩B)
= (A \B) ∪ (B \A).

The indicator function IA of the subset A of S is the function IA : S 7→ {0, 1}
defined by

IA(s) =

{
1 x ∈ A

0 otherwise.

It is also known as the characteristic function χA. Two subsets A and B of S are equal
iff IA(s) = IB(s) ∀s ∈ S. These relations are fairly obvious:

IĀ = 1− IA

IA∩B = IA · IB

IA∪B = IA + IB

IA◦B = IA + IB mod 2.

Proposition. A ◦ (B ◦ C) = (A ◦B) ◦ C.

Proof. For, modulo 2,

IA◦(B◦C) = IA + IB◦C = IA + IB + IC = IA◦B + IC = I(A◦B)◦C mod 2.

21



22 CHAPTER 3. SETS, FUNCTIONS AND RELATIONS

Thus P (S) is a group under ◦. Checking the group axioms we get:

• Given A,B ∈ P (S), A ◦B ∈ P (S) — closure,

• A ◦ (B ◦ C) = (A ◦B) ◦ C — associativity,

• A ◦ ∅ = A for all A ∈ P (S) — identity,

• A ◦A = ∅ for all A ∈ P (S) — inverse.

We note that A ◦B = B ◦A so that this group is abelian.

3.1.1 De Morgan’s Laws
Proposition. 1. A ∩B = Ā ∪ B̄

2. A ∪B = Ā ∩ B̄

Proof.

IA∩B = 1− IA∩B = 1− IAIB

= (1− IA) + (1− IB)− (1− IA)(1− IB)
= IĀ + IB̄ − IĀ∩B̄

= IĀ∪B̄ .

We prove 2 by using 1 on Ā and B̄.

A more general version of this is: Suppose A1, . . . , An ⊆ S. Then

1.
⋂n

i=1 Ai =
⋃n

i=1 Āi

2.
⋃n

i=1 Ai =
⋂n

i=1 Āi.

These can be proved by induction on n.

3.1.2 Inclusion-Exclusion Principle
Note that |A| =

∑
s∈S IA(s).

Theorem 3.1 (Principle of Inclusion-Exclusion). Given A1, . . . , An ⊆ S then

|A1 ∪ · · · ∪An| =
∑

∅6=J⊆{1,...,n}

(−1)|J|−1 |AJ | , where AJ =
⋂
i∈J

Ai.

Proof. We consider A1 ∪ · · · ∪An and note that

IA1∪···∪An
= IĀ1∩···∩Ān

= IĀ1
IĀ2

. . . IĀn

= (1− IA1)(1− IA2) . . . (1− IAn)

=
∑

J⊆{1,...,n}

(−1)|J|IAJ
,
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Summing over s ∈ S we obtain the result∣∣A1 ∪ · · · ∪An

∣∣ = ∑
J⊆{1,...,n}

(−1)|J| |AJ | ,

which is equivalent to the required result.

Just for the sake of it, we’ll prove it again!

Proof. For each s ∈ S we calculate the contribution. If s ∈ S but s is in no Ai then
there is a contribution 1 to the left. The only contribution to the right is +1 when J = ∅.
If s ∈ S and K = {i ∈ {1, . . . , n} : s ∈ Ai} is non-empty then the contribution to the
right is

∑
I⊆K(−1)|I| =

∑k
i=0

(
k
i

)
(−1)i = 0, the same as on the left.

Example (Euler’s Phi Function).

φ(m) = m
∏

p prime
p|m

(
1− 1

p

)
.

Solution. Let m =
∏n

i=1 pai
i , where the pi are distinct primes and ai ∈ N. Let Ai be

the set of integers less than m which are divisible by pi. Hence φ(m) =
∣∣⋂n

i=1 Āi

∣∣.
Now |Ai| = m

pi
, in fact for J ⊆ {1, . . . ,m} we have |AJ | = mQ

i∈J pi
. Thus

φ(m) = m− m

p1
− m

p2
− · · · − m

pn

+
m

p1p2
+

m

p1p3
+ · · ·+ m

p2p3
+ · · ·+ m

pn−1pn

...

+ (−1)n m

p1p2 . . . pn

= m
∏

p prime
p|m

(
1− 1

p

)
as required.

Example (Derangements). Suppose we have n psychologists at a meeting. Leaving
the meeting they pick up their overcoats at random. In how many ways can this be
done so that none of them has his own overcoat. This number is Dn, the number of
derangements of n objects.

Solution. Let Ai be the number of ways in which psychologist i collects his own coat.
Then Dn =

∣∣Ā1 ∩ · · · ∩ Ān

∣∣. If J ⊆ {1, . . . , n} with |J | = k then |AJ | = (n − k)!.
Thus ∣∣Ā1 ∩ · · · ∩ Ān

∣∣ = n!−
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− . . .

= n!
n∑

k=0

(−1)k

k!
.

Thus Dn is the nearest integer to n! e−1, since Dn

n! → e−1 as n →∞.
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3.2 Functions
Let A,B be sets. A function (or mapping, or map) f : A 7→ B is a way to associate
a unique image f(a) ∈ B with each a ∈ A. If A and B are finite with |A| = m and
|B| = n then the set of all functions from A to B is finite with nm elements.

Definition. The function f : A 7→ B is injective (or one-to-one) if f(a1) = f(a2)
implies that a1 = a2 for all a1, a2 ∈ A.

The number of injective functions from an m-set to an n-set is nm.

Definition. The function f : A 7→ B is surjective (or onto) if each b ∈ B has at least
one preimage a ∈ A.

The number of surjective functions from an m-set to an n-set is n!S(m,n).

Definition. The function f : A 7→ B is bijective if it is both injective and surjective.

If A and B are finite then f : A 7→ B can only be bijective if |A| = |B|. If
|A| = |B| < ∞ then any injection is a bijection; similarly any surjection is a bijection.
There are n! bijections between two n-sets.

If A and B are infinite then there exist injections which are not bijections and vice
versa. For instance if A = B = N, define

f(n) =

{
1 n = 1
n− 1 otherwise

and g(n) = n + 1.

Then f is surjective but not injective and g is injective but not surjective.

Proposition.

n!S(m,n) =
n∑

k=0

(−1)k

(
n

k

)
(n− k)m

Proof. This is another application of the Inclusion-Exclusion principle. Consider the
set of functions from A to B with |A| = m and |B| = n. For any i ∈ B, define Xi to
be the set of functions avoiding i.

So the set of surjections is X̄1∩· · ·∩X̄n. Thus the number of surjections from A to
B is

∣∣X̄1 ∩ · · · ∩ X̄n

∣∣. By the inclusion-exclusion principle this is
∑

J⊆B(−1)|J| |XJ |.
If |J | = k then |XJ | = (n− k)m. The result follows.

Mappings can be “composed”. Given f : A 7→ B and g : B 7→ C we can define
gf : A 7→ C by gf(a) = g(f(a)). If f and g are injective then so is gf , similarly for
surjectivity. If we also have h : C 7→ D, then associativity of composition is easily
verified : (hg)f ≡ h(gf).

3.3 Permutations
A permutation of A is a bijection f : A 7→ A. One notation is

f =
(

1 2 3 4 5 6 7 8
1 3 4 2 8 7 6 5

)
.

The set of permutations of A is a group under composition, the symmetric group
sym A. If |A| = n then sym A is also denoted Sn and |sym A| = n!. Sn is not abelian
— you can come up with a counterexample yourself. We can also think of permutations
as directed graphs, in which case the following becomes clear.
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Proposition. Any permutation is the product of disjoint cycles.

We have a new notation for permutations, cycle notation.1 For our function f
above, we write

f = (1)(2 3 4)(5 8)(6 7) = (2 3 4)(5 8)(6 7).

3.3.1 Stirling numbers of the first kind
Definition. s(n, k) is the number of permutations of {1, . . . , n} with precisely k cycles
(including fixed points).

For instance s(n, n) = 1, s(n, n − 1) =
(
n
2

)
, s(n, 1) = (n − 1)!, s(n, 0) =

s(0, k) = 0 for all k, n ∈ N but s(0, 0) = 1.

Lemma 3.1.
s(n, k) = s(n− 1, k − 1) + (n− 1)s(n− 1, k)

Proof. Either the point n is in a cycle on its own (s(n−1, k−1) such) or it is not. In this
case, n can be inserted into any of n− 1 places in any of the s(n− 1, k) permutations
of {1, . . . , n− 1}.

We can use this recurrence to prove this proposition. (Proof left as exercise.)

Proposition.
xn =

∑
k

s(n, k)xk

3.3.2 Transpositions and shuffles
A transposition is a permutation which swaps two points and fixes the rest.

Theorem 3.2. Every permutation is the product of transpositions.

Proof. Since every permutations is the product of cycles we only need to check for
cycles. This is easy: (i1 i2 . . . ik) = (i1 i2)(i2 i3) . . . (ik−1 ik).

Theorem 3.3. For a given permutation π, the number of transpositions used to write
π as their product is either always even or always odd.

We write signπ =

{
+1 if always even
−1 if always odd

. We say that π is an
even
odd permutation.

Let c(π) be the number of cycles in the disjoint cycle representation of π (including
fixed points).

Lemma 3.2. If σ = (a b) is a transposition that c(πσ) = c(π)± 1.

Proof. If a and b are in the same cycle of π then πσ has two cycles, so c(πσ) =
c(π)+1. If a and b are in different cycles then they contract them together and c(πσ) =
c(π)− 1.

Proof of theorem 3.3. Assume π = σ1 . . . σkι = τ1 . . . τlι. Then c(π) = c(ι) + k ≡
c(ι) + l (mod 2). Hence k ≡ l (mod 2) as required.

1See the Algebra and Geometry course for more details.
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We note that signπ = (−1)n−c(π), thus sign(π1π2) = signπ1 signπ2 and thus
sign is a homomorphism from Sn to {±1}.

A k-cycle is an even permutation iff k is odd. A permutation is an
even
odd per-

mutation iff the number of even length cycles in the disjoint cycle representation is
even
odd .

3.3.3 Order of a permutation
If π is a permutation then the order of π is the least natural number n such that πn = ι.
The order of the permutation π is the lcm of the lengths of the cycles in the disjoint
cycle decomposition of π.

In card shuffling we need to maximise the order of the relevant permutation π. One
can show (see) that for π of maximal length we can take all the cycles in the disjoint
cycle representation to have prime power length. For instance with 30 cards we can get
a π ∈ S30 with an order of 4620 (cycle type 3 4 5 7 11).

3.3.4 Conjugacy classes in Sn

Two permutations α, β ∈ Sn are conjugate iff ∃π ∈ Sn such that α = πβπ−1.

Theorem 3.4. Two permutations are conjugate iff they have the same cycle type.

This theorem is proved in the Algebra and Geometry course. We note the corollary
that the number of conjugacy classes in Sn equals the number of partitions of n.

3.3.5 Determinants of an n× n matrix
In the Linear Maths course you will prove that if A = (aij) is an n× n matrix then

det A =
∑

π∈Sn

signπ

n∏
j=1

aj π(j).

3.4 Binary Relations
A binary relation on a set S is a property that any pair of elements of S may or may
not have. More precisely:

Write S×S, the Cartesian square of S for the set of pairs of elements of S, S×S =
{(a, b) : a, b ∈ S}. A binary relation R on S is a subset of S × S. We write a R b iff
(a, b) ∈ R. We can think of R as a directed graph with an edge from a to b iff a R b.

A relation R is:

• reflexive iff a R a ∀a ∈ S,

• symmetric iff a R b ⇒ b R a ∀a, b ∈ S,

• transitive iff a R b, b R c ⇒ a R c ∀a, b, c ∈ S,

• antisymmetric iff a R b, b R a ⇒ a = b ∀a, b ∈ S.
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The relation R on S is an equivalence relation if it is reflexive, symmetric and
transitive. These are “nice” properties designed to make R behave something like =.

Definition. If R is a relation on S, then

[a]R = [a] = {b ∈ S : a R b}.

If R is an equivalence then these are the equivalence classes.

Theorem 3.5. If R is an equivalence relation then the equivalence classes form a
partition of S.

Proof. If a ∈ S then a ∈ [a], so the classes cover all of S. If [a] ∩ [b] 6= ∅ then
∃c ∈ [a] ∩ [b]. Now a R c and b R c ⇒ c R b. Thus a R b and b ∈ [a]. If d ∈ [b]
then b R d so a R d and thus [b] ⊆ [a]. We can similarly show that [a] ⊆ [b] and thus
[a] = [b].

The converse of this is true: if we have a partition of S we can define an equivalence
relation on S by a R b iff a and b are in the same part.

An application of this is the proof of Lagrange’s Theorem. The idea is to show that
being in the same (left/right) coset is an equivalence relation.

Given an equivalence class on S the quotient set is S/R, the set of all equivalence
classes. For instance if S = R and a R b iff a − b ∈ Z then S/R is (topologically) a
circle. If S = R2 and (a1, b1) R (a2, b2) iff a1 − a2 ∈ Z and b1 − b2 ∈ Z the quotient
set is a torus.

Returning to a general relation R, for each k ∈ N we define

R(k) = {(a, b) : there is a path of length at k from a to b}.

R(1) = R and R(∞) = t(R), the transitive closure of R. R(∞) is defined as⋃
i≥1R(i).

3.5 Posets
R is a (partial) order on S if it is reflexive, anti-symmetric and transitive. The set S is
a poset (partially ordered set) if there is an order R on S.

We generally write a ≤ b iff (a, b) ∈ R, and a < b iff a ≤ b and a 6= b.
Consider Dn, the set of divisors of n. Dn is partially ordered by division, a ≤ b if

a | b. We have the Hasse diagram, in this case for D36:

36

18 12

9

3

46

2

1



28 CHAPTER 3. SETS, FUNCTIONS AND RELATIONS

A descending chain is a sequence a1 > a2 > a3 > . . . . An antichain is a subset of
S with no two elements directly comparable, for instance {4, 6, 9} in D36.

Proposition. If S is a poset with no chains of length > n then S can be covered by at
most n antichains.

Proof. Induction on n. Take n > 1 and let M be the set of all maximal elements in S.
Now S \M has no chains of length > n− 1 and M is an antichain.

3.5.1 Products of posets
Suppose A and B are posets. Then A×B has various orders; two of them being

• product order: (a1, b1) ≤ (a2, b2) iff a1 ≤ a2 and b1 ≤ b2,

• lexicographic order: (a1, b1) ≤ (a2, b2) if either a1 ≤ a2 or if a1 = a2 then
b1 ≤ b2.

Exercise: check that these are orders.
Note that there are no infinite descending chains in N × N under lexicographic

order. Such posets are said to be well ordered. The principle of induction follows from
well-ordering as discussed earlier.

3.5.2 Eulerian Digraphs
A digraph is Eulerian if there is a closed path covering all the edges. A necessary
condition is: the graph is connected and even (each vertex has an equal number of “in”
and “out” edges). This is in fact sufficient.

Proposition. The set of such digraphs is well-ordered under containment.

Proof. Assume proposition is false and let G be a minimal counterexample. Let T be
a non-trivial closed path in G, for instance the longest closed path. Now T must be
even, so G \ T is even. Hence each connected component of G \ T is Eulerian as G
is minimal. But then G is Eulerian: you can walk along T and include all edges of
connected components of G \ T when encountered — giving a contradiction. Hence
there are no minimal counterexamples.

3.6 Countability
Definition. A set S is countable if either |S| < ∞ or ∃ a bijection f : S 7→ N.

The countable sets can be equivalently thought of as those that can be listed on a
line.

Lemma 3.3. Any subset S ⊂ N is countable.

Proof. For: map the smallest element of S to 1, the next smallest to 2 and so on.

Lemma 3.4. A set S is countable iff ∃ an injection f : S 7→ N.

Proof. This is clear for finite S. Hence assume S is infinite. If f : S 7→ N is an
injection then f(S) is an infinite subset of N. Hence ∃ a bijection g : f(S) 7→ N. Thus
gf : S 7→ N is a bijection.
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An obvious result is that if S′ is countable and ∃ an injection f : S 7→ S′ then S is
countable.

Proposition. Z is countable.

Proof. Consider f : Z 7→ N,

f : x 7→

{
2x + 1 if x ≥ 0
−2x if x < 0.

This is clearly a bijection.

Proposition. Nk is countable for k ∈ N.

Proof. The map (i1, . . . , ik) 7→ 2i13i2 . . . pik

k (pj is the jth prime) is an injection by
uniqueness of prime factorisation.

Lemma 3.5. If A1, . . . , Ak are countable with k ∈ N, then so is A1 × · · · ×Ak.

Proof. Since Ai is countable there exists an injection fi : Ai 7→ N. Hence the function
g : A1, . . . , Ak 7→ Nk defined by g(a1, . . . , ak) = (f1(a1), . . . , fk(ak)) is an injection.

Proposition. Q is countable.

Proof. Define f : Q 7→ N by

f :
a

b
7→ 2|a|3b51+sign a,

where (a, b) = 1 and b > 0.

Theorem 3.6. A countable union of countable sets is countable. That is, if I is a
countable indexing set and Ai is countable ∀i ∈ I then

⋃
i∈I Ai is countable.

Proof. Identify first I with the subset f(I) ⊆ N. Define F : A 7→ N by a 7→ 2n3m

where n is the smallest index i with a ∈ Ai, and m = fn(a). This is well-defined and
injective (stop to think about it for a bit).

Theorem 3.7. The set of all algebraic numbers is countable.

Proof. Let Pn be the set of all polynomials of degree at most n with integral coeffi-
cients. Then the map cnxn + · · ·+ c1x+ c0 7→ (cn, . . . , c1, c0) is an injection from Pn

to Zn+1. Hence each Pn is countable. It follows that the set of all polynomials with
integral coefficients is countable. Each polynomial has finitely many roots, so the set
of algebraic numbers is countable.

Theorem 3.8 (Cantor’s diagonal argument). R is uncountable.

Proof. Assume R is countable, then the elements can be listed as

r1 = n1.d11d12d13 . . .

r2 = n2.d21d22d13 . . .

r3 = n3.d31d32d33 . . .

(in decimal notation). Now define the real r = 0.d1d2d3 . . . by di = 0 if dii 6= 0 and
di = 1 if dii = 0. This is real, but it differs from ri in the ith decimal place. So the list
is incomplete and the reals are uncountable.
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Exercise: use a similiar proof to show that P (N) is uncountable.

Theorem 3.9. The set of all transcendental numbers is uncountable. (And therefore at
least non-empty!)

Proof. Let A be the set of algebraic numbers and T the set of transcendentals. Then
R = A ∪ T , so if T was countable then so would R be. Thus T is uncountable.

3.7 Bigger sets
The material from now on is starred.

Two sets S and T have the same cardinality (|S| = |T |) if there is a bijection
between S and T . One can show (the Schröder-Bernstein theorem) that if there is an
injection from S to T and an injection from T to S then there is a bijection between S
and T .

For any set S, there is an injection from S to P (S), simply x 7→ {x}. However
there is never a surjection S 7→ P (S), so |S| < |P (S)|, and so

|N| < |P (N)| < |P (P (N))| < . . .

for some sensible meaning of <.

Theorem 3.10. There is no surjection S 7→ P (S).

Proof. Let f : S 7→ P (S) be a surjection and consider X ∈ P (S) defined by {x ∈
S : x /∈ f(x)}. Now ∃x′ ∈ S such that f(x′) = X . If x′ ∈ X then x′ /∈ f(x′) but
f(x′) = X — a contradiction. But if x′ /∈ X then x′ /∈ f(x′) and x′ ∈ X — giving a
contradiction either way.

If there is an
injection
surjection f : A 7→ B then there exists a

surjection
injection g : B 7→ A.

Moreover we can ensure that
g ◦ f = ιA
f ◦ g = ιB
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